cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096328 Prime(p^3) where p = prime(n).

Original entry on oeis.org

19, 103, 691, 2309, 10957, 19403, 47657, 69031, 130073, 279431, 347707, 620531, 867677, 1013609, 1353887, 1999121, 2829503, 3152099, 4268039, 5145347, 5628457, 7258871, 8510507, 10651117, 14042671, 15986303, 17023271, 19235537, 20411623, 22909613, 33289481
Offset: 1

Views

Author

Cino Hilliard, Aug 02 2004

Keywords

Examples

			5 = prime(3). Hence, a(3) = prime(5^3) = prime(125) = 691.
7 = prime(4). Hence, a(4) = prime(7^3) = prime(343) = 2309.
		

Crossrefs

Cf. A222759.

Programs

  • Mathematica
    Table[ Prime[ Prime[n]^3], {n, 29}] (* Robert G. Wilson v, Aug 07 2004 *)
  • PARI
    g(n,m) = forprime(j=2,m, forprime(x=2,n,print1(prime(j^3)",");break))

Extensions

Edited by Robert G. Wilson v, Aug 07 2004

A222760 Conjectured least prime p for which binomial(n*q,q) (mod q^3) = n for all primes q >= p.

Original entry on oeis.org

2, 5, 3, 2, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

T. D. Noe, Mar 13 2013

Keywords

Comments

The n = 2 case is mentioned in Eric Weisstein's website.

Crossrefs

Cf. A096328 (prime(prime(n)^3)), A222759.

Programs

  • Mathematica
    lim = 100; Table[r = Table[Mod[Binomial[n*p, p], p^3] == n, {p, Prime[Range[lim]]}]; i = lim; While[i > 0 && r[[i]], i--]; Prime[i + 1], {n, 87}]
Showing 1-2 of 2 results.