cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A222759 Conjectured number of primes p for which binomial(n*p,p) (mod p^3) does not equal n.

Original entry on oeis.org

0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

T. D. Noe, Mar 12 2013

Keywords

Comments

It appears that, for k > 2 and n >= prime(prime(k)^3), then a(n) >= k.
Sequences A000720 and A056811 give results for binomial(n*p,p) (mod p) and binomial(n*p,p) (mod p^2), respectively. It appears that mod p^3 is the last case; that is, this identity does not hold for higher powers. - T. D. Noe, Mar 14 2013

Crossrefs

Cf. A096328 (prime(prime(n)^3)).
Cf. A000720, A056811 (primePi(n) and primePi(sqrt(n))).

Programs

  • Mathematica
    Table[Length[Select[Prime[Range[100]], Mod[Binomial[n*#,#], #^3] != n &]], {n, 87}]

A243896 a(n) = prime(n^2+1).

Original entry on oeis.org

2, 3, 11, 29, 59, 101, 157, 229, 313, 421, 547, 673, 829, 1013, 1201, 1429, 1621, 1889, 2153, 2441, 2749, 3089, 3463, 3821, 4217, 4639, 5059, 5521, 6011, 6491, 7001, 7577, 8167, 8741, 9343, 9941, 10631, 11329, 12071, 12757, 13513, 14341, 15107, 15881
Offset: 0

Views

Author

Freimut Marschner, Jun 17 2014

Keywords

Comments

For n>1, the numbers prime(n^2-1), prime(n^2) and prime(n^2+1), that is, A243895(n), A001248(n) and a(n), constitute a triple of successive prime numbers.

Examples

			n = 4, n^2 = 16, n^2 + 1 = 17, prime(17) = 59.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2). A011757 (prime(n^2)), A055875 (prime(n^3)), A096327 (prime((prime(n)^2))), A096328 (prime(prime(n)^3)), A038580 (prime(prime(prime(n)))).

Programs

  • Mathematica
    Table[Prime[n^2+1],{n,0,50}] (* Harvey P. Dale, Dec 25 2022 *)

Formula

a(n) = prime(n^2 + 1) = prime(A000290(n) + 1) = prime(A002522(n)).

A243895 a(n) = prime(n^2-1).

Original entry on oeis.org

5, 19, 47, 89, 149, 223, 307, 409, 523, 659, 823, 997, 1187, 1423, 1613, 1877, 2141, 2423, 2731, 3079, 3457, 3797, 4201, 4621, 5039, 5507, 5987, 6473, 6991, 7561, 8147, 8731, 9337, 9929, 10613, 11317, 12043, 12739, 13487, 14323, 15091, 15859, 16741
Offset: 2

Views

Author

Freimut Marschner, Jun 17 2014

Keywords

Comments

The prime numbers prime(k-1), prime(k) = A001248 and prime(k+1) = A243896 with k = n^2 are building a triple of successive prime numbers. Remark: prime(n^2-1) is not defined for n=1.

Examples

			n = 3, n^2 = 9, n^2-1 = 8, prime(8) = 19.
		

Crossrefs

Cf. A000290 (squares n^2), A000040 (prime(n)), A001248 (prime(n)^2), A011757 (prime(n^2)), A055875 (prime(n^3)), A096327 (prime((prime(n)^2))), A096328 (prime(prime(n)^3)), A038580 (prime(prime(prime(n)))).

Programs

  • Mathematica
    Table[Prime[n^2-1],{n,2,50}] (* Harvey P. Dale, Jul 16 2025 *)

Formula

a(n) = prime(n^2-1) = prime(A000290(n) - 1) = prime(A005563(n-1)).

A222760 Conjectured least prime p for which binomial(n*q,q) (mod q^3) = n for all primes q >= p.

Original entry on oeis.org

2, 5, 3, 2, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

T. D. Noe, Mar 13 2013

Keywords

Comments

The n = 2 case is mentioned in Eric Weisstein's website.

Crossrefs

Cf. A096328 (prime(prime(n)^3)), A222759.

Programs

  • Mathematica
    lim = 100; Table[r = Table[Mod[Binomial[n*p, p], p^3] == n, {p, Prime[Range[lim]]}]; i = lim; While[i > 0 && r[[i]], i--]; Prime[i + 1], {n, 87}]
Showing 1-4 of 4 results.