A222882 Decimal expansion of Sierpiński's second constant, K2 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} A004018(i^2)) - 4/Pi * log(n)).
2, 2, 5, 4, 9, 2, 2, 4, 6, 2, 8, 8, 8, 2, 6, 4, 7, 6, 6, 2, 6, 8, 1, 8, 4, 7, 5, 9, 5, 2, 8, 7, 2, 3, 5, 5, 7, 8, 7, 1, 6, 6, 1, 5, 9, 8, 6, 0, 5, 3, 5, 1, 8, 8, 9, 1, 3, 8, 3, 1, 1, 6, 1, 8, 8, 5, 9, 1, 7, 2, 9, 2, 8, 9, 5, 9, 7, 1, 3, 9, 3, 4, 1, 0, 5, 8
Offset: 1
Examples
K2 = 2.25492246288826476626818475952872355787166159860535188913831...
References
- Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Errata and Addenda to Mathematical Constants, (June 2012), pp. 15-16.
- A. Schinzel, Wacław Sierpiński’s papers on the theory of numbers, Acta Arithmetica XXI, (1972), pp. 7-13. Corrigenda in "Dzieje Matematyki Polskiej" (Wrocław 2012), p.228 (in Polish).
Programs
-
Mathematica
Take[Flatten[RealDigits[N[4(12 Log[Gamma[3/4]]-9 Log[Pi]+72 Log[Glaisher]-5 Log[2]+3 EulerGamma-3)/(3 Pi),100]]],86]
-
PARI
4/Pi*(log(exp(3*Euler-1)/(2^(2/3)/agm(sqrt(2),1)^2)) - 12/Pi^2*zeta'(2)) \\ Charles R Greathouse IV, Dec 12 2013
Formula
K2 = 4 / Pi * (eulergamma + K / Pi - 12 / Pi^2 * zeta'(2) + log(2) / 3 -1), where K is Sierpiński's first constant (A062089) and eulergamma is the Euler-Mascheroni constant (A001620).
K2 = 4 * (12 * log(Gamma(3/4)) - 9*log(Pi) + 72*log(A) - 5*log(2) + 3 * eulergamma - 3) / (3 * Pi), where A is the Glaisher-Kinkelin constant (A074962).
K2 = 4 * (12 * log(Gamma(3/4)) + log(A^72 * e^(3*eulergamma - 3) / (32 * Pi^9))) / (3 * Pi).
K2 = 4 / Pi * (log(e^(3*eulergamma - 1) / (2^(2/3) * G^2)) - 12 / Pi^2 * zeta'(2)), where G is Gauss’ AGM constant (A014549).
K2 = 4 / Pi * (log(Pi^2 * e^(3*eulergamma - 1) / (2^(2/3) * L^2)) - 12 / Pi^2 * zeta'(2)), where L is Gauss’ lemniscate constant (A062539).
Extensions
Minor edits by Vaclav Kotesovec, Nov 14 2014
Comments