cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223135 Number of distinct sums i + j + k with i, j, k >= 0, i*j*k = n and gcd(i,j,k) <= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 3, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 2, 5, 2, 2, 1, 10, 1, 2, 4, 4, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 7, 3, 2, 1, 10, 2, 2, 2, 5, 1, 8, 2, 4, 2, 2, 2, 7, 1, 4, 4, 8, 1, 5, 1, 5, 5
Offset: 0

Views

Author

Robert Price, Jun 12 2013

Keywords

Comments

Note that gcd(0,m) = m for any m.

Crossrefs

Programs

  • Mathematica
    f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] ≤ 1, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}]
  • PARI
    A223135(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if((i*j*k==n)&&(gcd(i,gcd(j,k))<=1), sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ Antti Karttunen, Oct 21 2017

Extensions

More terms from Antti Karttunen, Oct 21 2017