A223169 Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n is odd, and of 3^(n/2)*(x^(2/3)*d/dx)^n when n is even.
1, 1, 3, 4, 3, 4, 24, 9, 28, 42, 9, 28, 252, 189, 27, 280, 630, 270, 27, 280, 3360, 3780, 1080, 81, 3640, 10920, 7020, 1404, 81, 3640, 54600, 81900, 35100, 5265, 243, 58240, 218400, 187200, 56160, 6480, 243, 58240, 1048320, 1965600
Offset: 0
Examples
Triangle begins: 1; 1, 3; 4, 3; 4, 24, 9; 28, 42, 9; 28, 252, 189, 27; 280, 630, 270, 27; 280, 3360, 3780, 1080, 81; 3640, 10920, 7020, 1404, 81; 3640, 54600, 81900, 35100, 5265, 243, 58240, 218400, 187200, 56160, 6480, 243
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 13 do a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 ))); end do;