A223511 Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1
Examples
1; 9,1; 153,27,1; 3825,855,54,1; 126225,32895,2745,90,1; 5175225,1507815,150930,6705,135,1; 253586025,80565975,9205245,499590,13860,189,1; 14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
Crossrefs
Programs
-
Maple
b[0]:=g(x): for j from 1 to 10 do b[j]:=simplify(x^9*diff(b[j-1],x$1); end do; # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
-
Mathematica
rows = 8; t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
Comments