A223525 Triangle S(n,k) by rows: coefficients of 3^((n-1)/2)*(x^(1/3)*d/dx)^n when n=1,3,5,...
1, 4, 3, 4, 24, 9, 28, 252, 189, 27, 280, 3360, 3780, 1080, 81, 3640, 54600, 81900, 35100, 5265, 243, 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729, 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187, 608608000
Offset: 1
Examples
Triangle begins: 1; 4, 3; 4, 24, 9;, 28, 252, 189, 27; 280, 3360, 3780, 1080, 81; 3640, 54600, 81900, 35100, 5265, 243; 1106560, 4979520, 5335200, 2134080, 369360, 27702, 729; 24344320, 127807680, 164324160, 82162080, 18960480, 2133054, 112266, 2187;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(3^((i+1)mod 2)*x^(((i+1)mod 2+1)/3)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j-1]; end do;