cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223549 Triangle T(n,k), read by rows, giving the numerator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <=n.

Original entry on oeis.org

1, 3, 1, 21, 15, 3, 77, 43, 35, 5, 1155, 885, 1095, 315, 35, 4389, 8589, 7161, 777, 693, 63, 33649, 80353, 42245, 12285, 16485, 3003, 231, 129789, 91635, 233001, 170145, 152625, 20889, 6435, 429, 4023459, 3283533, 9804465, 8625375, 9695565, 1772199, 819819, 109395, 6435, 15646785, 58019335, 49782755, 25638305, 69324255, 31726695, 9794785, 245245, 230945, 12155
Offset: 0

Views

Author

Jean-François Alcover, Mar 22 2013

Keywords

Comments

From Petros Hadjicostas, May 21 2020: (Start)
Let P_n(x) = Sum_{k=0..n} (T(n,k)/A223550(n,k))*x^k be the Boros-Moll polynomial. It follows from the theory in Comtet (1967, pp. 81-83 and 85-86) that the polynomial Q_n(x) = 2^n*n!*P_n(x) has integer coefficients and satisfies the recurrence (x-1)*Q_n(x) = 2*(2*n - 1)*(x^2 - 2)*Q_{n-1}(x) + (16*(n-1)^2 - 1)*(x + 1)*Q_{n-2}(x).
We have integral_{y = 0..infinity} dy/(y^4 + 2*x*y + 1)^(n + 1) = Pi * P_n(x)/(2^(n + (3/2)) * (x + 1)^(n + (1/2))) = Pi * Q_n(x)/(2^(2*n + (3/2)) * n! * (x + 1)^(n + (1/2))) for x > -1 and n integer >= 0.
It also follows from the theory in Comtet (1967, pp. 81-83) that g(t) = (sqrt(x + sqrt(x^2 - 1 + t)) - sqrt(x - sqrt(x^2 - 1 + t))) / sqrt((1 - t) * (x^2 - 1 + t)) = Sum_{n >= 0} t^n * P_n(x)/(2^(n - (1/2)) * (x + 1)^(n + (1/2))) for x >= 1 and 0 <= t < 1.
From Comtet's result, we get g(t)^2 = 2*(x - sqrt(1-t))/((1-t) * (x^2 - 1 + t)) = 2/((1-t) * (x + sqrt(1-t))) = Sum_{n >= 0} (Sum_{k=0..n} P_k(x) * P_{n-k}(x)) / (2^(n-1) * (x+1)^(n+1)) * t^n for 0 <= t < 1 and x > 1. (End)

Examples

			P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
As a result, integral_{y = 0..infinity} dy/(y^4 + 2*x*y + 1)^4 = Pi * P_3(x)/(2^(3 + (3/2)) * (x + 1)^(3 + (1/2))) = Pi * (40*x^3 + 140*x^2 + 172*x + 77)/(32 * sqrt(2*(x + 1)^7)) for x > -1. - _Petros Hadjicostas_, May 22 2020
From _Bruno Berselli_, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins as follows:
       1;
       3,     1;
      21,    15,      3;
      77,    43,     35,      5;
    1155,   885,   1095,    315,     35;
    4389,  8589,   7161,    777,    693,    63;
   33649, 80353,  42245,  12285,  16485,  3003,  231;
  129789, 91635, 233001, 170145, 152625, 20889, 6435, 429;
  ... (End)
		

Crossrefs

Cf. A067001, A223550 (denominators), A334907.

Programs

  • Magma
    /* As triangle: */ [[Numerator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
  • Mathematica
    t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Numerator, {n, 0, 9}, {k, 0, n}] // Flatten

Formula

T(n,k)/A223550(n,k) = 2^(-2*n)*Sum_{j=k..n} 2^j*binomial(2*n - 2*j, n - j)*binomial(n + j, j)*binomial(j, k) = 2^(-2*n)*A067001(n,n-k) for n >= 0 and k = 0..n.
P_n(x) = Sum_{k=0..n} (T(n, k)/A223550(n,k))*x^k = ((2*n)!/4^n/(n!)^2)*2F1([-n, n + 1], [1/2 - n], (x + 1)/2).
From Petros Hadjicostas, May 22 2020: (Start)
Recurrence for the polynomial: 4*n*(n - 1)*(x - 1)*P_n(x) = 4*(2*n - 1)*(n - 1)*(x^2 - 2)*P_{n-1}(x) + (16*(n - 1)^2 - 1)*(x + 1)*P_{n-2}(x).
O.g.f. for P_n(x): sqrt((x + 1)/(1 - 2*(x + 1)*w)/(x + sqrt(1 - 2*(x + 1)*w))). [It follows from Comtet's theory and my comments.]
P_n(1) = Sum_{k=0..n} T(n,k)/A223550(n,k) = A334907(n)/(2^n*n!). (End)

Extensions

Various sections and name edited by Petros Hadjicostas, May 22 2020