A223680 T(n,k)=Number of nXk 0..1 arrays with rows and antidiagonals unimodal.
2, 4, 4, 7, 16, 8, 11, 49, 64, 16, 16, 121, 316, 256, 32, 22, 256, 1118, 2032, 1024, 64, 29, 484, 3177, 9822, 13045, 4096, 128, 37, 841, 7745, 35509, 85663, 83737, 16384, 256, 46, 1369, 16857, 105995, 384009, 744272, 537496, 65536, 512, 56, 2116, 33615, 275775
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..0....0..0..1..1....1..1..0..0....0..0..0..1....0..0..0..0 ..1..0..0..0....0..1..1..0....0..1..1..0....1..1..0..0....1..0..0..0 ..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..480
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) -3*a(n-2) -5*a(n-3) +2*a(n-4)
k=4: [order 9]
k=5: [order 19]
k=6: [order 36]
k=7: [order 70]
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
n=2: a(n) = (1/4)*n^4 + (1/2)*n^3 + (5/4)*n^2 + 1*n + 1
n=3: a(n) = (23/360)*n^6 + (31/120)*n^5 + (17/9)*n^4 + (23/24)*n^3 + (917/360)*n^2 + (77/60)*n + 1
n=4: polynomial of degree 8
n=5: polynomial of degree 10 for n>2
n=6: polynomial of degree 12 for n>3
n=7: polynomial of degree 14 for n>4
Comments