cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223680 T(n,k)=Number of nXk 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

2, 4, 4, 7, 16, 8, 11, 49, 64, 16, 16, 121, 316, 256, 32, 22, 256, 1118, 2032, 1024, 64, 29, 484, 3177, 9822, 13045, 4096, 128, 37, 841, 7745, 35509, 85663, 83737, 16384, 256, 46, 1369, 16857, 105995, 384009, 744272, 537496, 65536, 512, 56, 2116, 33615, 275775
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Table starts
....2.......4.........7.........11..........16...........22............29
....4......16........49........121.........256..........484...........841
....8......64.......316.......1118........3177.........7745.........16857
...16.....256......2032.......9822.......35509.......105995........275775
...32....1024.....13045......85663......384009......1363639.......4123210
...64....4096.....83737.....744272.....4106403.....17068664......58944337
..128...16384....537496....6458585....43632367....210660192.....821284360
..256...65536...3450100...56030742...462307835...2577807779...11265254628
..512..262144..22145617..486038270..4893189359..31402790284..152970187735
.1024.1048576.142149013.4215998078.51766786082.381690187059.2064772010660

Examples

			Some solutions for n=3 k=4
..0..0..0..0....0..0..1..1....1..1..0..0....0..0..0..1....0..0..0..0
..1..0..0..0....0..1..1..0....0..1..1..0....1..1..0..0....1..0..0..0
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0....1..1..0..0
		

Crossrefs

Column 1 is A000079
Column 2 is A000302
Column 3 is A188868
Row 1 is A000124
Row 2 is A086601

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) -3*a(n-2) -5*a(n-3) +2*a(n-4)
k=4: [order 9]
k=5: [order 19]
k=6: [order 36]
k=7: [order 70]
Empirical for row n:
n=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
n=2: a(n) = (1/4)*n^4 + (1/2)*n^3 + (5/4)*n^2 + 1*n + 1
n=3: a(n) = (23/360)*n^6 + (31/120)*n^5 + (17/9)*n^4 + (23/24)*n^3 + (917/360)*n^2 + (77/60)*n + 1
n=4: polynomial of degree 8
n=5: polynomial of degree 10 for n>2
n=6: polynomial of degree 12 for n>3
n=7: polynomial of degree 14 for n>4