cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A223676 Number of nX4 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

11, 121, 1118, 9822, 85663, 744272, 6458585, 56030742, 486038270, 4215998078, 36570143008, 317213501163, 2751542844692, 23867162292347, 207026174729348, 1795765890711121, 15576654086308004, 135113465080900087
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 4 of A223680

Examples

			Some solutions for n=3
..0..0..1..0....1..0..0..0....0..0..0..0....1..1..1..0....0..0..0..1
..0..0..0..0....1..0..0..0....1..1..1..1....1..0..0..0....0..0..1..0
..0..0..0..1....0..0..1..0....0..0..0..0....0..0..1..1....0..1..1..1
		

Formula

Empirical: a(n) = 11*a(n-1) -21*a(n-2) +18*a(n-3) -114*a(n-4) +183*a(n-5) -96*a(n-6) +80*a(n-7) -65*a(n-8) +16*a(n-9)

A223677 Number of nX5 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

16, 256, 3177, 35509, 384009, 4106403, 43632367, 462307835, 4893189359, 51766786082, 547539109894, 5790804006475, 61241515380486, 647657786582245, 6849233638750700, 72433084682283498, 766004610399351979
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 5 of A223680

Examples

			Some solutions for n=3
..0..0..0..0..0....0..0..0..1..0....1..0..0..0..0....0..0..1..1..1
..0..0..1..0..0....1..1..1..1..0....0..0..1..0..0....1..1..1..1..0
..0..0..0..1..0....0..1..1..1..1....0..0..0..1..0....0..0..0..1..0
		

Formula

Empirical: a(n) = 16*a(n-1) -65*a(n-2) +116*a(n-3) -387*a(n-4) -316*a(n-5) +5502*a(n-6) -6052*a(n-7) -5304*a(n-8) +10256*a(n-9) -13182*a(n-10) +1596*a(n-11) +36430*a(n-12) -48912*a(n-13) +27205*a(n-14) -2186*a(n-15) -10400*a(n-16) +7800*a(n-17) -2128*a(n-18) +192*a(n-19)

A223678 Number of nX6 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

22, 484, 7745, 105995, 1363639, 17068664, 210660192, 2577807779, 31402790284, 381690187059, 4633795630120, 56218000664764, 681802614308980, 8267243693472174, 100235088136900011, 1215221703756846658
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 6 of A223680

Examples

			Some solutions for n=3
..0..1..1..1..1..0....1..0..0..0..0..0....0..0..1..1..1..1....0..0..0..1..0..0
..0..1..1..0..0..0....0..0..0..0..1..1....0..0..0..0..0..1....0..1..1..0..0..0
..1..0..0..0..0..0....0..0..0..0..1..1....0..0..0..0..1..0....0..1..1..1..1..0
		

Formula

Empirical: a(n) = 22*a(n-1) -151*a(n-2) +461*a(n-3) -797*a(n-4) -4885*a(n-5) +28261*a(n-6) +53750*a(n-7) -398208*a(n-8) +360701*a(n-9) +952132*a(n-10) -5152120*a(n-11) +7572284*a(n-12) +6140578*a(n-13) -18089482*a(n-14) -653352*a(n-15) +28175814*a(n-16) +67786763*a(n-17) -392210630*a(n-18) +717516941*a(n-19) -875602031*a(n-20) +904784133*a(n-21) -930560603*a(n-22) +1037859554*a(n-23) -1035189626*a(n-24) +1256680629*a(n-25) -1842818297*a(n-26) +2256596552*a(n-27) -2217424297*a(n-28) +1613743557*a(n-29) -832569368*a(n-30) +412448612*a(n-31) -308789168*a(n-32) +241553248*a(n-33) -122269952*a(n-34) +31245376*a(n-35) -2822400*a(n-36)

A223679 Number of nX7 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

29, 841, 16857, 275775, 4123210, 58944337, 821284360, 11265254628, 152970187735, 2064772010660, 27771600878598, 372727832822131, 4995706936865652, 66902046494918683, 895490435068510617, 11982518313043515007
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Column 7 of A223680

Examples

			Some solutions for n=3
..0..1..1..0..0..0..0....1..1..1..0..0..0..0....0..1..1..1..1..1..1
..1..1..1..1..0..0..0....0..0..0..0..0..0..0....1..1..1..0..0..0..0
..0..0..0..0..0..0..1....0..0..0..1..1..1..1....0..0..0..0..0..0..0
		

Formula

Empirical: a(n) = 29*a(n-1) -296*a(n-2) +1435*a(n-3) -3427*a(n-4) -7828*a(n-5) +49592*a(n-6) +352558*a(n-7) -636195*a(n-8) -10876335*a(n-9) +33814287*a(n-10) +11969416*a(n-11) -303909144*a(n-12) +441678604*a(n-13) +3422280936*a(n-14) -8859148026*a(n-15) +852850231*a(n-16) -40652559025*a(n-17) +224135872305*a(n-18) -288423328788*a(n-19) -387179703160*a(n-20) +1064968890514*a(n-21) +233134451136*a(n-22) -1109142831534*a(n-23) +8548651106250*a(n-24) -48852225377678*a(n-25) +122390385655489*a(n-26) -195703619047481*a(n-27) +392869508379804*a(n-28) -1151435265560089*a(n-29) +2171538014535193*a(n-30) -2300815249155302*a(n-31) +1897414184113747*a(n-32) -1653214464072941*a(n-33) -137348547691080*a(n-34) +9036579264546509*a(n-35) -25618517273435769*a(n-36) +39827335881630628*a(n-37) -72361643136916710*a(n-38) +153209010276945668*a(n-39) -202596443036523874*a(n-40) +120138000799594382*a(n-41) +3287904513855923*a(n-42) -79300534420052725*a(n-43) +265881642838692769*a(n-44) -575489964002754564*a(n-45) +652989472152746893*a(n-46) -369186741991254341*a(n-47) -11325499984554073*a(n-48) +358162777599477400*a(n-49) -655515344162720269*a(n-50) +756584002882183489*a(n-51) -633515360531580266*a(n-52) +387864257955999943*a(n-53) +2512474825339141*a(n-54) -446721853742066924*a(n-55) +629695429101778274*a(n-56) -471305399541927500*a(n-57) +240594715609426998*a(n-58) -155135547438406450*a(n-59) +164328285437212760*a(n-60) -133901062998735172*a(n-61) +59901911520102136*a(n-62) -6917958139189656*a(n-63) -14599393419547920*a(n-64) +23267385598748520*a(n-65) -22070070657235008*a(n-66) +12659868667050624*a(n-67) -4121488825869312*a(n-68) +681725317178880*a(n-69) -43934723481600*a(n-70)

A223681 Number of 3 X n 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

8, 64, 316, 1118, 3177, 7745, 16857, 33615, 62518, 109838, 184042, 296260, 460799, 695703, 1023359, 1471149, 2072148, 2865868, 3899048, 5226490, 6911941, 9029021, 11662197, 14907803, 18875106, 23687418, 29483254, 36417536, 44662843, 54410707
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Row 3 of A223680.

Examples

			Some solutions for n=3:
..1..1..1....0..0..0....0..0..0....1..1..0....1..0..0....1..1..0....0..1..1
..0..1..0....0..1..0....0..1..1....0..0..1....0..1..0....0..1..0....1..1..0
..0..0..0....1..1..1....0..1..1....1..0..0....0..1..1....1..1..0....0..0..0
		

Crossrefs

Cf. A223680.

Formula

Empirical: a(n) = (23/360)*n^6 + (31/120)*n^5 + (17/9)*n^4 + (23/24)*n^3 + (917/360)*n^2 + (77/60)*n + 1.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(8 + 8*x + 36*x^2 - 30*x^3 + 27*x^4 - 4*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A223682 Number of 4 X n 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

16, 256, 2032, 9822, 35509, 105995, 275775, 646407, 1395174, 2815594, 5372794, 9777124, 17079747, 28794301, 47049089, 74774613, 115931628, 175785252, 261231028, 381179194, 547003777, 773063487, 1077301747, 1481933555
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2013

Keywords

Comments

Row 4 of A223680.

Examples

			Some solutions for n=3:
..1..1..0....0..0..1....1..0..0....0..0..0....0..1..1....1..1..0....0..1..0
..1..1..0....0..0..0....0..1..0....1..1..0....0..1..0....0..1..0....0..0..1
..0..1..1....0..0..0....1..0..0....0..1..1....0..0..0....1..1..0....1..1..1
..0..0..1....0..1..1....0..1..0....1..1..0....0..1..1....1..0..0....0..1..0
		

Crossrefs

Cf. A223680.

Formula

Empirical: a(n) = (1/112)*n^8 + (79/1260)*n^7 + (121/120)*n^6 + (71/36)*n^5 + (475/48)*n^4 - (1757/180)*n^3 + (8893/840)*n^2 - (569/84)*n + 9.
Conjectures from Colin Barker, Aug 22 2018: (Start)
G.f.: x*(16 + 112*x + 304*x^2 - 594*x^3 + 775*x^4 - 442*x^5 + 216*x^6 - 36*x^7 + 9*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A223683 Number of 5Xn 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

32, 1024, 13045, 85663, 384009, 1363639, 4123210, 11062778, 27036251, 61267043, 130398069, 263173867, 507406703, 940062881, 1681523014, 2915323586, 4914979621, 8079822545, 12982166253, 20428540847, 31538210365, 47842720947
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 5 of A223680

Examples

			Some solutions for n=3
..0..0..0....0..1..0....1..1..1....0..1..1....1..0..0....1..1..1....1..0..0
..0..0..0....0..0..0....1..1..1....0..1..0....1..1..0....0..0..0....0..0..0
..0..1..0....0..0..0....0..1..0....0..1..1....0..1..0....0..0..0....0..1..0
..0..1..0....0..0..1....0..0..0....1..1..0....0..0..0....0..0..1....0..0..1
..0..1..1....1..1..0....0..1..0....0..0..1....0..1..1....0..0..0....0..1..1
		

Formula

Empirical: a(n) = (359/453600)*n^10 + (251/30240)*n^9 + (14533/60480)*n^8 + (583/630)*n^7 + (62303/5400)*n^6 - (4999/1440)*n^5 + (14868751/181440)*n^4 - (1038043/3780)*n^3 + (3156491/8400)*n^2 - (91003/210)*n + 362 for n>2

A223684 Number of 6Xn 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

64, 4096, 83737, 744272, 4106403, 17068664, 58944337, 178002044, 484800960, 1215412314, 2845433373, 6286999243, 13216899344, 26605753969, 51547601046, 96528061541, 175319673499, 309757515173, 533729732564, 898819275234
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 6 of A223680

Examples

			Some solutions for n=3
..1..1..0....1..0..0....0..0..1....1..0..0....1..1..0....0..0..1....1..1..1
..0..1..1....0..1..0....1..0..0....1..1..1....0..0..1....0..1..0....0..1..1
..1..1..0....0..1..1....0..1..1....1..1..1....0..1..0....1..1..1....1..1..1
..0..0..1....1..1..0....1..0..0....0..0..0....0..0..1....0..1..1....0..1..1
..0..1..1....1..1..0....0..1..1....0..1..0....0..1..0....0..0..0....0..1..1
..0..1..1....1..1..0....1..0..0....1..1..0....0..0..0....0..1..0....0..0..0
		

Formula

Empirical: a(n) = (271/5443200)*n^12 + (2327/3326400)*n^11 + (44081/1360800)*n^10 + (67031/362880)*n^9 + (1007557/226800)*n^8 + (1582/675)*n^7 + (211210703/1360800)*n^6 - (60265871/120960)*n^5 + (11265884461/5443200)*n^4 - (118533836/14175)*n^3 + (2826245099/151200)*n^2 - (113088191/3960)*n + 23503 for n>3

A223685 Number of 7Xn 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

128, 16384, 537496, 6458585, 43632367, 210660192, 821284360, 2758051780, 8275194605, 22704480123, 57880672236, 138698869116, 315159317570, 683706718357, 1423847390903, 2859216983489, 5556849891974, 10484853235610
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Row 7 of A223680

Examples

			Some solutions for n=3
..0..0..0....0..0..1....0..0..1....0..0..0....0..0..1....0..0..0....0..0..0
..0..1..1....0..0..1....0..0..1....0..1..1....0..0..1....0..1..1....0..0..0
..1..1..0....0..1..0....0..1..1....0..0..0....0..0..0....1..1..0....1..1..0
..1..1..1....0..0..1....0..1..1....0..1..0....0..1..0....0..0..0....0..1..0
..0..1..0....1..1..1....1..1..0....1..1..0....0..1..1....1..1..0....0..1..0
..0..1..0....1..1..0....1..0..0....1..1..0....0..0..1....0..0..0....1..1..0
..0..0..1....0..0..0....0..0..0....0..1..1....0..0..0....0..1..1....0..0..0
		

Formula

Empirical: a(n) = (503/209563200)*n^14 + (6527/155675520)*n^13 + (68839/23950080)*n^12 + (1220297/59875200)*n^11 + (1890089/2177280)*n^10 + (181499/362880)*n^9 + (1367211271/15240960)*n^8 - (1887455579/5443200)*n^7 + (43827922247/10886400)*n^6 - (12546180643/544320)*n^5 + (1259322375259/11975040)*n^4 - (234159554591/554400)*n^3 + (13743908156557/11642400)*n^2 - (52010645243/24024)*n + 1969115 for n>4

A223675 Number of n X n 0..1 arrays with rows and antidiagonals unimodal.

Original entry on oeis.org

2, 16, 316, 9822, 384009, 17068664, 821284360, 41697505423, 2202335611907, 120016210924727, 6715040320826544, 384617913213951506, 22513060559771644440, 1345458233683987073442, 82071805127975022481091
Offset: 1

Views

Author

R. H. Hardin Mar 25 2013

Keywords

Comments

Diagonal of A223680

Examples

			Some solutions for n=3
..1..1..1....1..1..0....0..1..1....0..0..1....0..1..0....0..1..0....0..1..1
..0..1..1....1..1..0....1..1..0....1..1..1....1..1..1....0..0..0....1..0..0
..0..0..1....0..1..1....1..1..1....0..1..0....0..0..0....0..1..1....0..0..0
		
Showing 1-10 of 10 results.