cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A223702 Irregular triangle of numbers k such that A002313(n), the n-th prime not congruent to 3 mod 4 is the largest prime factor of k^2 + 1.

Original entry on oeis.org

1, 2, 3, 7, 5, 8, 18, 57, 239, 4, 13, 21, 38, 47, 268, 12, 17, 41, 70, 99, 157, 307, 6, 31, 43, 68, 117, 191, 302, 327, 882, 18543, 9, 32, 73, 132, 278, 378, 829, 993, 2943, 23, 30, 83, 182, 242, 401, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298
Offset: 1

Views

Author

T. D. Noe, Apr 03 2013

Keywords

Comments

Note that primes of the form 4x+3 are not divisors.

Examples

			Irregular triangle:
   p | {k}
-----+---------------------------------
   2 | {1},
   5 | {2, 3, 7},
  13 | {5, 8, 18, 57, 239},
  17 | {4, 13, 21, 38, 47, 268},
  29 | {12, 17, 41, 70, 99, 157, 307},
  37 | {6, 31, 43, 68, 117, 191, 302, 327, 882, 18543},
  41 | {9, 32, 73, 132, 278, 378, 829, 993, 2943}
  ...
		

Crossrefs

Cf. A002313, A014442, A177979 (first terms), A185389 (last terms), A223705, A285283, A379346 (row lengths), A379347 (row sums).
Cf. A223701, A223703, A223704 (related tables).

Programs

  • Mathematica
    t = Table[FactorInteger[n^2 + 1][[-1,1]], {n, 10^5}]; Table[Flatten[Position[t, Prime[n]]], {n, 13}]

Extensions

Definition amended by Andrew Howroyd, Dec 22 2024

A249132 Smallest noncomposite k such that prime(n) is the largest prime factor of k^2+1, or 0 if no such k exists.

Original entry on oeis.org

1, 0, 2, 0, 0, 5, 13, 0, 0, 17, 0, 31, 73, 0, 0, 23, 0, 11, 0, 0, 173, 0, 0, 233, 463, 293, 0, 0, 251, 919, 0, 0, 37, 0, 193, 0, 443, 0, 0, 599, 0, 19, 0, 467, 211, 0, 0, 0, 0, 107, 89, 0, 659, 0, 241, 0, 2503, 0, 337, 53, 0, 3671, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 22 2014

Keywords

Comments

a(A080148(m)) = 0. - Joerg Arndt, Oct 22 2014

Examples

			a(1)=1 is in this sequence because 1 is in A008578 and the largest prime factor of 1^2+1 = 2 is prime(1).
		

Crossrefs

Programs

  • Maple
    A249132:= proc(n) local p,i,k,a,b;
       p:= ithprime(n);
       if p mod 4 = 3 then return 0 fi;
       a:= numtheory:-msqrt(-1,p);
       if a < p/2 then b:= p-a
       else b:= a; a:= p-a
       fi;
       for i from 0 do
        for k in [a+i*p,b+i*p] do
          if isprime(k) and p = max(numtheory:-factorset(k^2+1)) then
            return(k)
          fi
        od
       od
    end proc:
    1,seq(A249132(n),n=2..100); # Robert Israel, Nov 10 2014
  • Mathematica
    a249132[n_Integer] := Module[{t = Table[0, {n}], k, s, p}, Do[If[Mod[Prime[k], 4] == 3, t[[k]] = -1], {k, n}]; k = 0; While[Times @@ t == 0, k++; s = FactorInteger[k^2 + 1][[-1, 1]]; p = PrimePi[s]; If[p <= n && t[[p]] == 0 && ! CompositeQ[k], t[[p]] = k]]; t /. -1 -> 0]; a249132[120] (* Michael De Vlieger, Nov 11 2014, adapted from A223702 *)
Showing 1-2 of 2 results.