cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223852 Poly-Cauchy numbers c_5^(-n).

Original entry on oeis.org

-6, -8, 48, 340, 984, -1148, -34152, -254780, -1250376, -3417788, 12508248, 296104900, 3122953464, 26485493572, 201873508248, 1443404093380, 9892106472504, 65798800964932, 428187502981848, 2740792716574660, 17321987718906744, 108394003491348292
Offset: 1

Views

Author

Takao Komatsu, Mar 28 2013

Keywords

Comments

Definition of poly-Cauchy numbers in A222627.

Programs

  • Magma
    [&+[StirlingFirst(5,k)*(k+1)^n: k in [0..5]]: n in [1..25]]; // Bruno Berselli, Mar 28 2013
    
  • Mathematica
    Table[Sum[StirlingS1[5, k] (k + 1)^n, {k, 0, 5}], {n, 25}]
  • PARI
    a(n) = sum(k=0, 5, stirling(5, k, 1)*(k+1)^n); \\ Michel Marcus, Nov 14 2015

Formula

a(n) = Sum_{k=0..5} Stirling1(5,k)*(k+1)^n.
Empirical g.f.: -2*x*(810*x^3 - 361*x^2 + 56*x - 3) / ((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Mar 31 2013