A224173 T(n,k) = number of n X k 0..3 arrays with rows, diagonals and antidiagonals unimodal and columns nondecreasing.
4, 16, 10, 50, 100, 20, 130, 684, 400, 35, 296, 3526, 4739, 1225, 56, 610, 14751, 38561, 22988, 3136, 84, 1163, 52591, 242114, 272130, 87878, 7056, 120, 2083, 165212, 1253770, 2335459, 1460836, 282372, 14400, 165, 3544, 468292, 5588411, 15925611
Offset: 1
Examples
Table starts: 4 16 50 130 296 610 1163 10 100 684 3526 14751 52591 165212 20 400 4739 38561 242114 1253770 5588411 35 1225 22988 272130 2335459 15925611 91494280 56 3136 87878 1460836 16625026 143558572 1012166273 84 7056 282372 6425876 95808564 1038484760 8857798353 120 14400 794220 24197608 468021427 6360047093 65713691148 165 27225 2010035 80350989 1994287334 33901838632 426013124302 220 48400 4668304 240416852 7568051210 160168789130 2451904991177 286 81796 10095924 658890738 25994968917 680269560125 12667946702827 ... Some solutions for n=3 k=4 ..0..0..1..0....0..0..1..2....0..0..3..0....0..2..0..0....0..3..3..1 ..1..3..3..1....0..1..3..2....3..3..3..1....1..2..0..0....1..3..3..1 ..1..3..3..3....0..3..3..2....3..3..3..2....2..2..1..0....1..3..3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..178
Crossrefs
Formula
Empirical: columns k=1..7 are polynomials of degree 3*k for n>0,0,0,3,6,9,12.
Empirical: rows n=1..5 are polynomials of degree 6*n for k>0,0,0,2,6.
Extensions
Name corrected by Andrew Howroyd, Mar 18 2025
Comments