A223902 Poly-Cauchy numbers of the second kind hat c_n^(-4).
1, -16, 97, -531, 3148, -20940, 156680, -1310840, 12166096, -124281120, 1387313520, -16813355280, 219967479744, -3090914335104, 46439677053120, -743069262651840, 12616998421804416, -226608929801923968, 4292762009479969536, -85545808260446050560, 1789078468694176410624
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012), p. 42-53.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
Programs
-
Mathematica
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^4, {k, 0, n}], {n, 0, 30}]
-
PARI
a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^4); \\ Michel Marcus, Nov 14 2015
Formula
a(n) = Sum_{k=0..n} (-1)^k * (k+1)^4 * Stirling1(n,k).
From Seiichi Manyama, Apr 15 2025: (Start)
E.g.f.: Sum_{k>=0} (k+1)^4 * (-log(1+x))^k / k!.
E.g.f.: (1/(1+x)) * Sum_{k=0..4} Stirling2(5,k+1) * (-log(1+x))^k.
a(n) = (-1)^n * Sum_{k=0..4} k! * Stirling2(5,k+1) * |Stirling1(n+1,k+1)|. (End)
Comments