cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224066 Number of smooth Schubert varieties of type C_n.

Original entry on oeis.org

1, 2, 7, 28, 114, 472, 1988, 8480, 36474, 157720, 684404, 2976994, 12971206, 56587676, 247097170, 1079749976, 4720841314, 20649303934, 90353041092, 395459463960, 1731251197242, 7580521689750, 33197447406682, 145400339328566, 636901149067534, 2790082285204966
Offset: 0

Views

Author

Sara Billey, Apr 02 2013

Keywords

Comments

Characterized as the signed permutations avoiding the list of patterns: '((1 -2) (-2 -1 -3) (3 -2 1) (3 -2 -1) (-3 2 -1) (-3 -2 1) (-3 -2 -1)(-2 -4 3 1) (3 4 1 2) (3 4 -1 2) (-3 4 1 2) (-3 4 -1 2)(-3 -4 -1 -2) (4 -1 3 -2) (4 2 3 1) (4 2 3 -1) (-4 2 3 1))

Crossrefs

Cf. A061539.

Programs

  • PARI
    seq(n)={Vec(((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x + O(x^n)))/((1-x)^2*(1-6*x+8*x^2-4*x^3)))} \\ Andrew Howroyd, Apr 06 2021

Formula

G.f.: ((1-7*x+15*x^2-11*x^3-2*x^4+5*x^5)+(x-x^2-x^3+3*x^4-x^5)*sqrt(1-4*x))/((1-x)^2*(1-6*x+8*x^2-4*x^3)). - Edward Richmond, Apr 06 2021

Extensions

a(0)=1 prepended and a(11) and beyond added by Edward Richmond, Apr 05 2021