A229826 Evil (A001969) numbers divisible by 7 but not divisible by 3.
77, 119, 154, 175, 238, 245, 287, 308, 329, 343, 350, 371, 413, 427, 455, 469, 476, 490, 497, 553, 574, 581, 616, 658, 679, 686, 700, 742, 763, 791, 826, 833, 854, 910, 917, 931, 938, 952, 980, 994, 1043, 1085, 1106, 1127, 1141, 1148, 1162, 1169, 1232, 1253
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- J. Coquet, A summation formula related to the binary digits, Inventiones Mathematicae 73 (1983), pp. 107-115.
- D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
- Vladimir Shevelev, Generalized Newman phenomena and digit conjectures on primes, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12.
Programs
-
Mathematica
With[{evil=Select[Range[0,1500],EvenQ[DigitCount[#,2,1]]&]},Select[evil, Divisible[#,7]&&!Divisible[#,3]&]] (* Harvey P. Dale, Dec 04 2014 *)
-
PARI
is(n)=hammingweight(n)%2==0 && gcd(n,21)==7 \\ Charles R Greathouse IV, Sep 30 2013
Comments