cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229826 Evil (A001969) numbers divisible by 7 but not divisible by 3.

Original entry on oeis.org

77, 119, 154, 175, 238, 245, 287, 308, 329, 343, 350, 371, 413, 427, 455, 469, 476, 490, 497, 553, 574, 581, 616, 658, 679, 686, 700, 742, 763, 791, 826, 833, 854, 910, 917, 931, 938, 952, 980, 994, 1043, 1085, 1106, 1127, 1141, 1148, 1162, 1169, 1232, 1253
Offset: 1

Views

Author

Vladimir Shevelev, Sep 30 2013

Keywords

Comments

By the Moser-Newman phenomenon, among the first N positive integers divisible by 3, the evil numbers are always in the majority. But what happens if we remove from the positive numbers the multiples of 3? We conjecture that in this case we obtain another phenomenon: among the first N such positive integers divisible by 7, the odious numbers (A000069) are always in the majority.

Crossrefs

Programs

  • Mathematica
    With[{evil=Select[Range[0,1500],EvenQ[DigitCount[#,2,1]]&]},Select[evil, Divisible[#,7]&&!Divisible[#,3]&]] (* Harvey P. Dale, Dec 04 2014 *)
  • PARI
    is(n)=hammingweight(n)%2==0 && gcd(n,21)==7 \\ Charles R Greathouse IV, Sep 30 2013

A230499 a(n) is the maximal number k of consecutive numbers of the form (2*n-1)*(2*i-1), i=1,2,...,k, which are all evil or all odious (A000069, A001969).

Original entry on oeis.org

1, 3, 2, 4, 4, 1, 1, 9, 8, 1, 1, 1, 1, 1, 1, 16, 16, 1, 1, 1, 1, 3, 4, 1, 1, 3, 2, 1, 1, 1, 1, 33, 32, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 5, 1, 1, 5, 2, 4, 20, 4, 3, 1, 1, 4, 2, 1, 1, 1, 1, 64, 64, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 5, 4, 3, 2, 1, 1, 2, 4, 3, 3, 1, 1
Offset: 1

Views

Author

Vladimir Shevelev, Oct 21 2013

Keywords

Comments

We call a(n) the multiplicative index of odious-evil stability of 2*n-1.

Examples

			For n=2, t=2*n-1=3. We see that 3*1=3, 3*3=9,3*5=15 are evil, but 3*7=21 is odious. So, a(2)=3.
		

Crossrefs

Programs

  • PARI
    a(n)=my(t=2*n-1,H=hammingweight(t)%2,i=3); while(H == hammingweight(i*t)%2, i+=2); i\2 \\ Charles R Greathouse IV, Oct 22 2013

Formula

If 2*n-1 is Mersenne number (A000225), then a(n)>=n; if 2*n-1 is odious such that 6*n-3 is not in A224072, then a(n)=1.

Extensions

a(17)-a(87) from Charles R Greathouse IV, Oct 22 2013

A230456 Odd evil a(n) (A001969), such that 3*a(n) and a(n)+3 are odious (A000069).

Original entry on oeis.org

23, 29, 39, 71, 95, 119, 125, 135, 159, 263, 287, 343, 349, 359, 373, 383, 407, 413, 423, 437, 469, 479, 503, 509, 519, 543, 599, 605, 615, 629, 639, 663, 669, 679, 711, 741, 791, 797, 807, 839, 869, 917, 933, 1031, 1055, 1111, 1117, 1127, 1141, 1151, 1175
Offset: 1

Views

Author

Vladimir Shevelev, Oct 19 2013

Keywords

Comments

Or a(n) is odd number such that the polynomial x^2 - (a(n)+3)*x + 3*a(n) has odious coefficients and evil roots.
3*a(n) is in the A224072.

Crossrefs

Programs

  • Mathematica
    evilQ[n_]:=EvenQ[DigitCount[n,2][[1]]]; odiousQ[n_]:=OddQ[DigitCount[n,2][[1]]]; Select[Range[3000], OddQ[#] && evilQ[#] && odiousQ[3#] && odiousQ[#+3]&] (* Peter J. C. Moses, Oct 19 2013 *)

Extensions

More terms from Peter J. C. Moses, Oct 19 2013
Showing 1-3 of 3 results.