cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224096 Denominators of poly-Cauchy numbers c_n^(3).

Original entry on oeis.org

1, 8, 216, 576, 108000, 14400, 14817600, 16934400, 571536000, 127008000, 101428588800, 18441561600, 709031939616000, 12120204096000, 6678479808000, 24932991283200, 229679599076928000, 818822100096000
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006233, A222636, A224094, A224097 (numerators).

Programs

  • Mathematica
    Table[Denominator[Sum[StirlingS1[n, k]/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = denominator(sum(k=0, n, stirling(n, k, 1)/(k+1)^3)); \\ Michel Marcus, Nov 15 2015

A224099 Numerators of poly-Cauchy numbers c_n^(4).

Original entry on oeis.org

1, 1, -65, 635, -1691507, 2602903, -30316306813, 405644259179, -281598937164737, 491752927006687, -38273845811539969069, 68624716189056755839, -372590717516807448774422779
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006232, A222748, A224095, A224097, A224098 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015

A224101 Numerators of poly-Cauchy numbers c_n^(5).

Original entry on oeis.org

1, 1, -211, 4241, -57453709, 29825987, -7362684132917, 198504470798947, -415989828245529323, 730328251215062341, -628191544925589374756597, 1131010588175721446183783, -80125844020238574218022657310343
Offset: 0

Views

Author

Takao Komatsu, Mar 31 2013

Keywords

Comments

The poly-Cauchy numbers c_n^(k) can be expressed in terms of the (unsigned) Stirling numbers of the first kind: c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))*(-1)^m/(m+1)^k, m=0..n).

Crossrefs

Cf. A006232, A223023, A224095, A224097, A224099, A224100 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
  • PARI
    a(n) = numerator(sum(k=0, n, stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
Showing 1-3 of 3 results.