A224099 Numerators of poly-Cauchy numbers c_n^(4).
1, 1, -65, 635, -1691507, 2602903, -30316306813, 405644259179, -281598937164737, 491752927006687, -38273845811539969069, 68624716189056755839, -372590717516807448774422779
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
Programs
-
Mathematica
Table[Numerator[Sum[StirlingS1[n, k]/ (k + 1)^4, {k, 0, n}]], {n, 0, 25}]
-
PARI
a(n) = numerator(sum(k=0, n,stirling(n, k, 1)/(k+1)^4)); \\ Michel Marcus, Nov 15 2015
Comments