A219247
Denominators of poly-Cauchy numbers of the second kind hat c_n^(2).
Original entry on oeis.org
1, 4, 36, 48, 1800, 240, 35280, 20160, 226800, 50400, 3659040, 665280, 1967565600, 2242240, 129729600, 34594560, 2677989600, 66830400, 1857684628800, 39109150080, 3226504881600, 307286179200, 2333316585600, 1285014931200, 2192556726360000, 25057791158400
Offset: 0
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Denominator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^2, {k, 0, n}]], {n, 0, 25}]
-
a(n) = denominator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^2)); \\ Michel Marcus, Nov 14 2015
A224104
Numerators of poly-Cauchy numbers of the second kind hat c_n^(3).
Original entry on oeis.org
1, -1, 35, -217, 135989, -236881, 435876493, -3174551347, 790667708347, -1473406853309, 11050163107919893, -20886680047664287, 9154917271574968829623, -277315386220087376401, 803143323197313772705
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
-
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^3, {k, 0, n}]], {n, 0,
25}]
-
a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^3)); \\ Michel Marcus, Nov 14 2015
A224109
Numerators of poly-Cauchy numbers of the second kind hat c_n^(5).
Original entry on oeis.org
1, -1, 275, -6289, 92902541, -154473289, 13399738273333, -377635608584803, 822223497000264427, -1492945924219675973, 1323386773861946436609781, -2448418399924413951578983, 177825546947844845937070681472647
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..260
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- Takao Komatsu, V. Laohakosol, and K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu and F. Z. Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725 [math.NT], 2016.
-
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^5, {k, 0, n}]], {n, 0, 25}]
-
a(n) = numerator(sum(k=0, n,(-1)^k*stirling(n, k, 1)/(k+1)^5)); \\ Michel Marcus, Nov 15 2015
Showing 1-3 of 3 results.
Comments