A224104 Numerators of poly-Cauchy numbers of the second kind hat c_n^(3).
1, -1, 35, -217, 135989, -236881, 435876493, -3174551347, 790667708347, -1473406853309, 11050163107919893, -20886680047664287, 9154917271574968829623, -277315386220087376401, 803143323197313772705
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012)
- Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
- Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
- T. Komatsu, V. Laohakosol, K. Liptai, A generalization of poly-Cauchy numbers and its properties, Abstract and Applied Analysis, Volume 2013, Article ID 179841, 8 pages.
- Takao Komatsu, FZ Zhao, The log-convexity of the poly-Cauchy numbers, arXiv preprint arXiv:1603.06725, 2016
Programs
-
Mathematica
Table[Numerator[Sum[StirlingS1[n, k] (-1)^k/ (k + 1)^3, {k, 0, n}]], {n, 0, 25}]
-
PARI
a(n) = numerator(sum(k=0, n, stirling(n, k, 1)*(-1)^k/(k+1)^3)); \\ Michel Marcus, Nov 14 2015
Comments