cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A224398 Prime numbers with m^2 digits that, if arranged in an m X m matrix, form m-digit reversible primes in each row, column, and in the two main diagonals.

Original entry on oeis.org

2, 3, 5, 7, 1117, 1171, 179991179, 191797919, 337353739, 733353337, 1193100992213191, 1193120192093911, 1193900112293191, 1193902910213911, 1733922710213719, 1933913317893391, 1933983337193191, 3191100999231193, 3191949710331913, 3371722912019173
Offset: 1

Views

Author

Giovanni Resta, Apr 05 2013

Keywords

Comments

Subsequence of A224164, in which only the main diagonal is requested to be a reversible prime. Suggested by Charles R Greathouse IV.
The smallest terms with 4, 9, 16, 25 and 36 digits are 1117, 179991179, 1193100992213191, 1119710007705077000179111 and 111119100049100049928141172283919913.

Examples

			When the digits of the prime p = 3391382115599173 are arranged in a 4 X 4 matrix:
3391
3821
1559
9173
the rows, the columns and the two main diagonals are 4-digit reversible primes, so p is in the sequence.
		

Crossrefs

Cf. A224164.

A375171 Square array T(n,k), n>0 and k>0, read by antidiagonals in ascending order, giving the smallest n*k-digit number that, if arranged in an n X k matrix, form k-digit reversible prime in each row and n-digit reversible prime in each column, or -1 if no such number exists.

Original entry on oeis.org

2, 37, 37, 337, 1111, 337, 3257, 111331, 113131, 3257, 32233, 13139731, 113101311, 11933371, 32233, 322573, 1111179779, 113101929311, 119310213191, 1119711779, 322573, 3222223, 111111131397, 113101167919739, 1193100990013911, 111971042937997, 111119111337, 3222223
Offset: 1

Views

Author

Jean-Marc Rebert, Aug 06 2024

Keywords

Examples

			T(3,2) = 111331 is the smallest 3*2-digit number that if arranged in a 3 X 2 matrix yields in each row and column an reversible prime, i.e.,
  11
  13
  31
-> 11 (1 time), 13 (1 time), 31 (1 time), 113 (1 time), 131 (1 time) are all reversible primes.
Table begins (upper left corner = T(1,1)):
     2       37          337             3257 ...
    37     1111       113131         11933371 ...
   337   111331    113101311     119310213191 ...
  3257 13139731 113101929311 1193100990013911 ...
   ...      ...          ...              ... ...
		

Crossrefs

Programs

  • PARI
    isp(x) = ispseudoprime(x) && ispseudoprime(fromdigits(Vecrev(digits((x)))));
    ispd(x) = ispseudoprime(fromdigits(x)) && ispseudoprime(fromdigits(Vecrev(x)));
    vp(n) = select(isp, [10^(n-1)..10^n-1]);
    isok(val, n, k) = my(d=digits(val), v=vector(k, i, []), j=1); for (i=1, #d, v[j] = concat(v[j], d[i]); j++; if (j>k, j=1);); for (i=1, k, if (!ispd(v[i]), return(0));); return(1);
    T(n,k) = my(v = vp(k), nbp = #v, nb = nbp^n); for (i=0, nb-1, my(d=digits(i, nbp)); if (d==[], d=vector(n)); while(#d x+1, d); my(s=""); for (i=1, #d, s = concat(s, Str(v[d[i]]))); my(val = eval(s)); if (isok(val, n, k), return(val));); \\ Michel Marcus, Aug 08 2024

Formula

T(1,n) = T(n,1) <= A177513(n) for n >1.
T(1,n) = T(n,1) = A177513(n) for n = 2..6.

A375234 Square array T(n,k), n>1 and k>1, read by antidiagonals in ascending order, giving the smallest n*k-digit number that, if arranged in an n X k matrix, forms a k-digit emirp (A006567) in each row and an n-digit emirp in each column, or -1 if no such number exists.

Original entry on oeis.org

1331, 131337, 113337, 13139731, 113113337, 11933371, 1313717979, 113149971311, 119314713911, 1119737379, 131313131397, 113107709179991, 1193100990013911, 111971414339313, 111119333337
Offset: 2

Views

Author

Jean-Marc Rebert, Aug 06 2024

Keywords

Examples

			T(3,2) = 131337 is the smallest 3*2-digit that if arranged in a 3 X 2 matrix yields in each row and column an emirp, i.e.,
 13
 13
 37
-> 13 (2 times), 37 (1 times), 113 (1 time), 337 (1 time) are all emirps.
Table begins (upper left corner = T(2,2)):
      1331       113337         11933371 ...
    131337    113113337     119314713911 ...
  13139731 113149971311 1193100990013911 ...
       ...          ...              ... ...
		

Crossrefs

Showing 1-3 of 3 results.