A224219 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.
1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
Offset: 1
Keywords
Examples
a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)* multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i)) end: a:= n-> b(n$2): seq(a(n), n=1..25); # Alois P. Heinz, Jul 07 2016
-
Mathematica
nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1] (* Second program: *) multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
Formula
E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).
Comments