cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224219 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.

Original entry on oeis.org

1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Comments

In other words, if the smallest block in a partition has size k then there are no other blocks in the partition with size k.

Examples

			a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
		

Crossrefs

Column k=1 of A372762.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember;
          `if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*
           multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 07 2016
  • Mathematica
    nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1]
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).