cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001466 Denominators of greedy Egyptian fraction expansion of Pi - 3.

Original entry on oeis.org

8, 61, 5020, 128541455, 162924332716605980, 28783052231699298507846309644849796, 871295615653899563300996782209332544845605756266650946342214549769447
Offset: 1

Views

Author

Keywords

Comments

A greedy Egyptian fraction expansion is also called a Sylvester expansion. - Robert FERREOL, May 02 2020

Examples

			Pi - 3 = 1/8 + 1/61 + 1/5020 + 1/128541455 + ... .
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A182257, A224230 for other versions of this sequence.
Cf. A006525 (similar for e-2).

Programs

  • Mathematica
    lst={};k=N[(Pi-3),1000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)
  • PARI
    x = Pi - 3;
    f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
    n(x, k) = ceil(1/f(x, k - 1));
    for(k = 1, 7, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 27 2017

A182257 Denominators of Egyptian fraction expansion of Pi.

Original entry on oeis.org

1, 1, 1, 8, 61, 5020, 128541455, 162924332716605980, 28783052231699298507846309644849796, 871295615653899563300996782209332544845605756266650946342214549769447
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2012

Keywords

Comments

Included for completeness. A001466 is the main entry.

Crossrefs

Programs

  • Mathematica
    lst={}; k=N[(Pi), 1000]; Do[s=Ceiling[1/k]; AppendTo[lst, s]; k=k-1/s, {n, 12}]; lst (* based on the Mma program from Vladimir Joseph Stephan Orlovsky in A001466 *)
  • PARI
    localprec(200); my(v=Pi, d); vector(10, i, v-=1/(d=ceil(1/v)); d) \\ Ruud H.G. van Tol, May 29 2025 (use prec.1200 for 13 terms)

A243020 Denominators of Egyptian fraction expansion of Pi, without repetition.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 744, 1173268, 2586625801171, 14348276635209672362238685, 1062286904072440687703470835520966381484062674280821
Offset: 1

Views

Author

Keywords

Comments

Slightly different version of A182257, disregarding the repetition of values.

Examples

			Pi = 1 + 1/2 + 1/3 + ... + 1/12 + 1/27 + 1/744 + ...
		

Crossrefs

Extensions

a(16)-a(18) from Arlu Genesis A. Padilla, Jul 30 2018
Showing 1-3 of 3 results.