cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A000918 a(n) = 2^n - 2.

Original entry on oeis.org

-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 68719476734, 137438953470
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the expected number of tosses of a fair coin to get n-1 consecutive heads. - Pratik Poddar, Feb 04 2011
For n > 2, Sum_{k=1..a(n)} (-1)^binomial(n, k) = A064405(a(n)) + 1 = 0. - Benoit Cloitre, Oct 18 2002
For n > 0, the number of nonempty proper subsets of an n-element set. - Ross La Haye, Feb 07 2004
Numbers j such that abs( Sum_{k=0..j} (-1)^binomial(j, k)*binomial(j + k, j - k) ) = 1. - Benoit Cloitre, Jul 03 2004
For n > 2 this formula also counts edge-rooted forests in a cycle of length n. - Woong Kook (andrewk(AT)math.uri.edu), Sep 08 2004
For n >= 1, conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4, 5, 6 and 7 as a digit. - Alexandre Wajnberg, Apr 25 2005
Beginning with a(2) = 2, these are the partial sums of the subsequence of A000079 = 2^n beginning with A000079(1) = 2. Hence for n >= 2 a(n) is the smallest possible sum of exactly one prime, one semiprime, one triprime, ... and one product of exactly n-1 primes. A060389 (partial sums of the primorials, A002110, beginning with A002110(1)=2) is the analog when all the almost primes must also be squarefree. - Rick L. Shepherd, May 20 2005
From the second term on (n >= 1), the binary representation of these numbers is a 0 preceded by (n - 1) 1's. This pattern (0)111...1110 is the "opposite" of the binary 2^n+1: 1000...0001 (cf. A000051). - Alexandre Wajnberg, May 31 2005
The numbers 2^n - 2 (n >= 2) give the positions of 0's in A110146. Also numbers k such that k^(k + 1) = 0 mod (k + 2). - Zak Seidov, Feb 20 2006
Partial sums of A155559. - Zerinvary Lajos, Oct 03 2007
Number of surjections from an n-element set onto a two-element set, with n >= 2. - Mohamed Bouhamida, Dec 15 2007
It appears that these are the numbers n such that 3*A135013(n) = n*(n + 1), thus answering Problem 2 on the Mathematical Olympiad Foundation of Japan, Final Round Problems, Feb 11 1993 (see link Japanese Mathematical Olympiad).
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is a proper subset of y or y is a proper subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
The permutohedron Pi_n has 2^n - 2 facets [Pashkovich]. - Jonathan Vos Post, Dec 17 2009
First differences of A005803. - Reinhard Zumkeller, Oct 12 2011
For n >= 1, a(n + 1) is the smallest even number with bit sum n. Cf. A069532. - Jason Kimberley, Nov 01 2011
a(n) is the number of branches of a complete binary tree of n levels. - Denis Lorrain, Dec 16 2011
For n>=1, a(n) is the number of length-n words on alphabet {1,2,3} such that the gap(w)=1. For a word w the gap g(w) is the number of parts missing between the minimal and maximal elements of w. Generally for words on alphabet {1,2,...,m} with g(w)=g>0 the e.g.f. is Sum_{k=g+2..m} (m - k + 1)*binomial((k - 2),g)*(exp(x) - 1)^(k - g). a(3)=6 because we have: 113, 131, 133, 311, 313, 331. Cf. A240506. See the Heubach/Mansour reference. - Geoffrey Critzer, Apr 13 2014
For n > 0, a(n) is the minimal number of internal nodes of a red-black tree of height 2*n-2. See the Oct 02 2015 comment under A027383. - Herbert Eberle, Oct 02 2015
Conjecture: For n>0, a(n) is the least m such that A007814(A000108(m)) = n-1. - L. Edson Jeffery, Nov 27 2015
Actually this follows from the procedure for determining the multiplicity of prime p in C(n) given in A000108 by Franklin T. Adams-Watters: For p=2, the multiplicity is the number of 1 digits minus 1 in the binary representation of n+1. Obviously, the smallest k achieving "number of 1 digits" = k is 2^k-1. Therefore C(2^k-2) is divisible by 2^(k-1) for k > 0 and there is no smaller m for which 2^(k-1) divides C(m) proving the conjecture. - Peter Schorn, Feb 16 2020
For n >= 0, a(n) is the largest number you can write in bijective base-2 (a.k.a. the dyadic system, A007931) with n digits. - Harald Korneliussen, May 18 2019
The terms of this sequence are also the sum of the terms in each row of Pascal's triangle other than the ones. - Harvey P. Dale, Apr 19 2020
For n > 1, binomial(a(n),k) is odd if and only if k is even. - Charlie Marion, Dec 22 2020
For n >= 2, a(n+1) is the number of n X n arrays of 0's and 1's with every 2 X 2 square having density exactly 2. - David desJardins, Oct 27 2022
For n >= 1, a(n+1) is the number of roots of unity in the unique degree-n unramified extension of the 2-adic field Q_2. Note that for each p, the unique degree-n unramified extension of Q_p is the splitting field of x^(p^n) - x, hence containing p^n - 1 roots of unity for p > 2 and 2*(2^n - 1) for p = 2. - Jianing Song, Nov 08 2022

Examples

			a(4) = 14 because the 14 = 6 + 4 + 4 rationals (in lowest terms) for n = 3 are (see the Jun 14 2017 formula above): 1/2, 1, 3/2, 2, 5/2, 3; 1/4, 3/4, 5/4, 7/4; 1/8, 3/8, 5/8, 7/8. - _Wolfdieter Lang_, Jun 14 2017
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134. - Mohammad K. Azarian, Oct 27 2011
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 86, Exercise 3.16.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Row sums of triangle A026998.
Cf. A058809 (3^n-3, n>0).

Programs

  • Haskell
    a000918 = (subtract 2) . (2 ^)
    a000918_list = iterate ((subtract 2) . (* 2) . (+ 2)) (- 1)
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Magma
    [2^n - 2: n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(2^n-2,n=0..20) ;
  • Mathematica
    Table[2^n - 2, {n, 0, 29}] (* Alonso del Arte, Dec 01 2012 *)
  • PARI
    a(n)=2^n-2 \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    def A000918(n): return (1<Chai Wah Wu, Jun 10 2025

Formula

a(n) = 2*A000225(n-1).
G.f.: 1/(1 - 2*x) - 2/(1 - x), e.g.f.: (e^x - 1)^2 - 1. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
For n >= 1, a(n) = A008970(n + 1, 2). - Philippe Deléham, Feb 21 2004
G.f.: (3*x - 1)/((2*x - 1)*(x - 1)). - Simon Plouffe in his 1992 dissertation for the sequence without the leading -1
a(n) = 2*a(n - 1) + 2. - Alexandre Wajnberg, Apr 25 2005
a(n) = A000079(n) - 2. - Omar E. Pol, Dec 16 2008
a(n) = A058896(n)/A052548(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A164874(n - 1, n - 1) for n > 1. - Reinhard Zumkeller, Aug 29 2009
a(n) = A173787(n,1); a(n) = A028399(2*n)/A052548(n), n > 0. - Reinhard Zumkeller, Feb 28 2010
a(n + 1) = A027383(2*n - 1). - Jason Kimberley, Nov 02 2011
G.f.: U(0) - 1, where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k + 1)/(x*2^(k + 1) - (k + 1)/U(k + 1) ))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n+1) is the sum of row n in triangle A051601. - Reinhard Zumkeller, Aug 05 2013
a(n+1) = A127330(n,0). - Reinhard Zumkeller, Nov 16 2013
a(n) = Sum_{k=1..n-1} binomial(n, k) for n > 0. - Dan McCandless, Nov 14 2015
From Miquel Cerda, Aug 16 2016: (Start)
a(n) = A000225(n) - 1.
a(n) = A125128(n-1) - A000325(n).
a(n) = A095151(n) - A125128(n) - 1. (End)
a(n+1) = 2*(n + Sum_{j=1..n-1} (n-j)*2^(j-1)), n >= 1. This is the number of the rationals k/2, k = 1..2*n for n >= 1 and (2*k+1)/2^j for j = 2..n, n >= 2, and 2*k+1 < n-(j-1). See the example for n = 3 below. Motivated by the proposal A287012 by Mark Rickert. - Wolfdieter Lang, Jun 14 2017

Extensions

Maple programs fixed by Vaclav Kotesovec, Dec 13 2014

A269993 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 9, 74, 8098, 101114070, 10080916639334518, 234737156891222571756748160861129, 104728182461244680288139397973895577148266725366426255244889745185
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
Guide to related sequences:
r(k) x denominators
1 sqrt(1/2) A069139
1 sqrt(1/3) A144983
1 sqrt(2) - 1 A006487
1 sqrt(3) - 1 A118325
1 tau - 1 A117116
1 1/Pi A006524
1 Pi-3 A001466
1 1/e A006526
1 e - 2 A006525
1 log(2) A118324
1 Euler constant A110820
1 (1/2)^(1/3) A269573
.
1/k sqrt(1/2) A269993
1/k sqrt(1/3) A269994
1/k sqrt(2) - 1 A269995
1/k sqrt(3) - 1 A269996
1/k tau - 1 A269997
1/k 1/Pi A269998
1/k Pi-3 A269999
1/k 1/e A270001
1/k e - 2 A270002
1/k log(2) A270314
1/k Euler constant A270315
1/k (1/2)^(1/3) A270316
.
Using the 12 choices for x shown above (that is, sqrt(1/2) to (1/2)^(1/3)), the denominator sequence of the r-Egyptian fraction for x appears for each of the following sequences (r(k)):
r(k) = 1 (see above)
r(k) = 1/k (see above)
r(k) = 2^(1-k): A270347-A270358
r(k) = 1/Fibonacci(k+1): A270394-A270405
r(k) = 1/prime(k): A270476-A270487
r(k) = 1/k!: A270517-A270527 (A000027 for x = e - 2)
r(k) = 1/(2k-1): A270546-A270557
r(k) = 1/(k+1): A270580-A270591

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + ...
		

Crossrefs

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = sqrt(1/2);
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 10, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code

A006525 Denominators of greedy Egyptian fraction for e - 2.

Original entry on oeis.org

2, 5, 55, 9999, 3620211523, 25838201785967533906, 3408847366605453091140558218322023440765
Offset: 1

Views

Author

Keywords

Comments

A greedy Egyptian fraction is also called a Sylvester expansion. - Robert FERREOL, May 02 2020

Examples

			e - 2 = 1/2 + 1/5 + 1/55 + 1/9999 + ... . - _Jon E. Schoenfield_, Dec 26 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001466 (similar for Pi-3).

Programs

  • Mathematica
    lst={};k=N[E-2,1000000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)
  • PARI
    x = exp(1) - 2;
    f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
    n(x, k) = ceil(1/f(x, k - 1));
    for(k = 1, 7, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 27 2017

Formula

a(n) = ceiling(1/(e - 2 - Sum_{j=0..n-1} 1/a(j))). - Jon E. Schoenfield, Dec 26 2014

Extensions

More terms from Herman P. Robinson
Offset changed to 1 by Indranil Ghosh, Mar 27 2017

A006526 Egyptian fraction for 1/e.

Original entry on oeis.org

3, 29, 15786, 513429610, 339840390654894740, 383515880462620946584018566350380249, 226890280396768133952782550246970728734549546771915172071782710229538300
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A068985 (1/e).

Programs

  • Mathematica
    a = {}; k = N[1/E, 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)

A006524 Egyptian fraction for 1/ Pi.

Original entry on oeis.org

4, 15, 609, 845029, 1010073215739, 1300459886313272270974271, 1939680952094609786557359582286462958434022504402
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    a = {}; k = N[1/Pi, 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)
  • PARI
    x = 1/Pi;
    f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
    n(x, k) = ceil(1/f(x, k - 1));
    for(k = 1, 7, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017

Extensions

More terms from Herman P. Robinson
Offset changed to 1 by Indranil Ghosh, Mar 27 2017

A144835 Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).

Original entry on oeis.org

2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Examples

			1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
		

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
  • PARI
    x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013

A144984 Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).

Original entry on oeis.org

3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A145003 Denominators of an Egyptian fraction for 1/sqrt(29) = 0.185695338... (A020786).

Original entry on oeis.org

6, 53, 6221, 891830563, 950677235679298964, 2245647960428048728674383451656707058, 11636905679093503238901947768600244923435901955366623291532461461126244496
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[29], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A156618 Denominators of Egyptian fraction for Pi-3 whose partial sums are the convergents.

Original entry on oeis.org

7, -742, 11978, -3740526, 1099482930, -2202719155, 6600663644, -26413901692, 96840976853, -496325469560, 2346251883960, -44006595799206, 1345586183756654, -4127747481719463, 10251870941174304
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 11 2009

Keywords

Comments

Numerators are all 1.

Examples

			3+1/a(0)=22/7
3+1/a(0)+1/a(1)=333/106
3+1/a(0)+1/a(1)+1/a(2)=355/113
		

Crossrefs

Programs

  • PARI
    c0=3; for (k=2,30,m=contfracpnqn(contfrac(Pi,k));c1=m[1,1]/m[2,1];print1(1/(c1-c0),", ");c0=c1;)

A182257 Denominators of Egyptian fraction expansion of Pi.

Original entry on oeis.org

1, 1, 1, 8, 61, 5020, 128541455, 162924332716605980, 28783052231699298507846309644849796, 871295615653899563300996782209332544845605756266650946342214549769447
Offset: 0

Views

Author

N. J. A. Sloane, Apr 21 2012

Keywords

Comments

Included for completeness. A001466 is the main entry.

Crossrefs

Programs

  • Mathematica
    lst={}; k=N[(Pi), 1000]; Do[s=Ceiling[1/k]; AppendTo[lst, s]; k=k-1/s, {n, 12}]; lst (* based on the Mma program from Vladimir Joseph Stephan Orlovsky in A001466 *)
  • PARI
    localprec(200); my(v=Pi, d); vector(10, i, v-=1/(d=ceil(1/v)); d) \\ Ruud H.G. van Tol, May 29 2025 (use prec.1200 for 13 terms)
Showing 1-10 of 37 results. Next