cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A006525 Denominators of greedy Egyptian fraction for e - 2.

Original entry on oeis.org

2, 5, 55, 9999, 3620211523, 25838201785967533906, 3408847366605453091140558218322023440765
Offset: 1

Views

Author

Keywords

Comments

A greedy Egyptian fraction is also called a Sylvester expansion. - Robert FERREOL, May 02 2020

Examples

			e - 2 = 1/2 + 1/5 + 1/55 + 1/9999 + ... . - _Jon E. Schoenfield_, Dec 26 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001466 (similar for Pi-3).

Programs

  • Mathematica
    lst={};k=N[E-2,1000000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)
  • PARI
    x = exp(1) - 2;
    f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
    n(x, k) = ceil(1/f(x, k - 1));
    for(k = 1, 7, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 27 2017

Formula

a(n) = ceiling(1/(e - 2 - Sum_{j=0..n-1} 1/a(j))). - Jon E. Schoenfield, Dec 26 2014

Extensions

More terms from Herman P. Robinson
Offset changed to 1 by Indranil Ghosh, Mar 27 2017

A270744 (r,1)-greedy sequence, where r(k) = 1/tau^k, where tau = golden ratio.

Original entry on oeis.org

1, 2, 2, 3, 4, 32, 1065, 2038968, 5977146319204, 36314862033946243071181679, 1028280647188781709727717632740627249617427013751977, 958046899855070460620234639622630375078362220775180051610386376308132568342498992099474472596860400289
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2016

Keywords

Comments

Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. (The same algorithm is used to generate sequences listed at A269993.)
Guide to related sequences:
x r(k)
1 1/tau^k A270744
1 k/tau^k A270745
1 2/e^k A270746
1 4/Pi^k A270747
1 2/log(k+1) A270748
1 k/log(k+1) A270749
1 1/(k*log(k+1)) A270750
1 1/(k*tau) A270751
1 1/(k*e) A270752
1 1/(k*sqrt(2)) A270916

Examples

			a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1;
a(2) = ceiling(r(2)/(1 - r(1)/1)) = 2;
a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2)) = 2.
The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are 0.618..., 0.809..., 0.927..., 0.975..., 0.998..., 0.999967... .
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = Infinity; z = 13;
    r[k_] := N[1/GoldenRatio^k, 1000]; f[x_, 0] = x;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
     x = 1; Table[n[x, k], {k, 1, z}]
    N[Sum[r[k]/n[x, k], {k, 1, 13}], 200]

Formula

a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1.

A270714 Decimal expansion of (1/2)^(1/3).

Original entry on oeis.org

7, 9, 3, 7, 0, 0, 5, 2, 5, 9, 8, 4, 0, 9, 9, 7, 3, 7, 3, 7, 5, 8, 5, 2, 8, 1, 9, 6, 3, 6, 1, 5, 4, 1, 3, 0, 1, 9, 5, 7, 4, 6, 6, 6, 3, 9, 4, 9, 9, 2, 6, 5, 0, 4, 9, 0, 4, 1, 4, 2, 8, 8, 0, 9, 1, 2, 6, 0, 8, 2, 5, 2, 8, 1, 2, 1, 0, 9, 5, 8, 6, 6, 3, 6, 7, 7
Offset: 0

Views

Author

Clark Kimberling, Mar 22 2016

Keywords

Comments

Let c = (1/2)^(1/3). A sphere of radius c*r has half the volume of a sphere of radius r. - Rick L. Shepherd, Aug 12 2016
Let c = (1/2)^(1/3). The relative maximum of xy(x+y)=1 is (c,-1/c^2). - Clark Kimberling, Oct 05 2020

Examples

			0.79370052598409973737585281963615413019574666394992650490414288091260825...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/2)^(1/3), 10, 200][[1]]
  • PARI
    (1/2)^(1/3) \\ Altug Alkan, Mar 22 2016

Formula

Equals 1/A002580 = A002580*A235362 = A005480*A020761. [corrected and expanded by Rick L. Shepherd, Aug 12 2016]
Equals Product_{k>=1} (1 + (-1)^k/(3*k+1)). - Amiram Eldar, Aug 10 2020

A270347 Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/4,1/8,...)

Original entry on oeis.org

2, 3, 7, 27, 650, 689392, 1130869248534, 2046949388776880512222550, 5664769376602746621028306587399157369622446276283, 61600875764518391286867927949695082949269716944423018977948114995142883041085134431474743108010213
Offset: 1

Views

Author

Clark Kimberling, Mar 17 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/2) = 1/2 + 1/(2*3) + 1/(4*7) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 2/2^k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 2/2^k;
    f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
    a(k, x=sqrt(1/2)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 18 2016

A269573 Denominators of r-Egyptian fraction expansion for (1/2)^(1/3), where r = (1,1,1,1,1,...)

Original entry on oeis.org

2, 4, 23, 4500, 23314202, 703143261541584, 580028504455491926110281336263, 471554575224119231041268294704259548817134505334232514876247
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.

Examples

			(1/2)^(1/3) = 1/2 + 1/4 + 1/23 + ...
		

Crossrefs

Cf. A269993 (guide to related sequences).

Programs

  • Mathematica
    r[k_] := 1; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 2^(-1/3); Table[n[x, k], {k, 1, z}]  (* A269573 *)

A269994 Denominators of r-Egyptian fraction expansion for sqrt(1/3), where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 7, 57, 3391, 10010183, 588972486242552, 961457184347597076119863109462, 2244227167765735741796211572067153905745156229769919746729015
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(1/3) = 1/2 + 1/(2*7) + 1/(3*57) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[1/3]; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = sqrt(1/3);
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 8, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code

A269995 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

3, 7, 36, 1300, 2206054, 14887222782418, 292542996759533035472424790, 7282957087563143077864043818232331102110274520711753058, 259880230781524461939787525796521055875618560291171401151227648777033604862236784108033156713828890456025177451
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(2) - 1 = 1/(2*3) + 1/(3*7) + 1/(4*36) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]

A269996 Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 3, 6, 26, 939, 800567, 626897816036, 732632470241183632257841, 31706715561023122142248280773186018287458544854469, 1666726692230759969765850044548001173784581299264219742879080654883940143766478552206863259848365362
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(3*6) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]

A269997 Denominators of r-Egyptian fraction expansion for -1 + golden ratio, where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

2, 5, 19, 511, 224138, 60658204540, 203857858414658884506671, 65699957103246706854223474912465037343245580906, 3942313430901049708832516976840058495554562175116278047675351101544028510870033057494673090034
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			tau - 1 = 1/2 + 1/(2*5) + 1/(3*19) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = GoldenRatio - 1; Table[n[x, k], {k, 1, z}]

A269998 Denominators of r-Egyptian fraction expansion for 1/Pi, where r = (1,1/2,1/3,1/4,...)

Original entry on oeis.org

4, 8, 58, 3984, 22875462, 931267108879599, 1031674577884217945682977326053, 1260295551033259417770370489346530643885445465368122822066849
Offset: 1

Views

Author

Clark Kimberling, Mar 15 2016

Keywords

Comments

Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.

Examples

			1/Pi = 1/4 + 1/(2*8) + 1/(3*58) + ...
		

Crossrefs

Cf. A269993.

Programs

  • Mathematica
    r[k_] := 1/k; f[x_, 0] = x; z = 10;
    n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
    f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
    x = 1/Pi; Table[n[x, k], {k, 1, z}]
  • PARI
    r(k) = 1/k;
    x = 1/Pi;
    f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
    n(x, k) = ceil(r(k)/f(x, k - 1));
    for(k = 1, 8, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 29 2017
Showing 1-10 of 99 results. Next