A269993
Denominators of r-Egyptian fraction expansion for sqrt(1/2), where r = (1,1/2,1/3,1/4,...)
Original entry on oeis.org
2, 3, 9, 74, 8098, 101114070, 10080916639334518, 234737156891222571756748160861129, 104728182461244680288139397973895577148266725366426255244889745185
Offset: 1
sqrt(1/2) = 1/2 + 1/(2*3) + 1/(3*9) + ...
-
r[k_] := 1/k; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Sqrt[1/2]; Table[n[x, k], {k, 1, z}]
-
r(k) = 1/k;
x = sqrt(1/2);
f(x, k) = if(k<1, x, f(x, k - 1) - r(k)/n(x, k));
n(x, k) = ceil(r(k)/f(x, k - 1));
for(k = 1, 10, print1(n(x, k),", ")) \\ Indranil Ghosh, Mar 27 2017, translated from Mathematica code
A001466
Denominators of greedy Egyptian fraction expansion of Pi - 3.
Original entry on oeis.org
8, 61, 5020, 128541455, 162924332716605980, 28783052231699298507846309644849796, 871295615653899563300996782209332544845605756266650946342214549769447
Offset: 1
Pi - 3 = 1/8 + 1/61 + 1/5020 + 1/128541455 + ... .
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Simon Plouffe, Table of n, a(n) for n = 1..10 (There is a limit of about 1000 digits on the size of numbers in b-files)
- Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, p. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64.
- K. R. R. Gandhi, Edifice of the real numbers by alternating series, International Journal of Mathematical Archive-3(9), 2012, 3277-3280. - From _N. J. A. Sloane_, Jan 02 2013
- Simon Plouffe, Table of n, a(n) for n = 1..14
- H. P. Robinson, Letter to N. J. A. Sloane, Sep 1975
- H. E. Salzer, The approximation of numbers as sums of reciprocals, Amer. Math. Monthly, 54 (1947), 135-142.
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Wikipedia, Greedy algorithm for Egyptian fractions
- J. W. Wrench, Jr., Letter to N. J. A. Sloane, Mar 27 1974
- Index entries for sequences related to the number Pi
-
lst={};k=N[(Pi-3),1000];Do[s=Ceiling[1/k];AppendTo[lst,s];k=k-1/s,{n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)
-
x = Pi - 3;
f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
n(x, k) = ceil(1/f(x, k - 1));
for(k = 1, 7, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 27 2017
A144835
Denominators of an Egyptian fraction for 1/zeta(2) = 0.607927101854... (A059956).
Original entry on oeis.org
2, 10, 127, 18838, 522338493, 727608914652776081, 990935377560451600699026552443764271, 1223212384013602554473872691328685513734082755736750146553750539914774364
Offset: 1
1/zeta(2) = 0.607927101854... = 1/2 + 1/10 + 1/127 + 1/18838 + ...
- Amiram Eldar, Table of n, a(n) for n = 1..11
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342.
- Eric Weisstein's World of Mathematics, Egyptian Fraction.
- Index entries for sequences related to Egyptian fractions.
Cf.
A001466,
A006487,
A006524,
A006525,
A006526,
A059956,
A069139,
A110820,
A117116,
A118323,
A118324,
A118325.
-
a = {}; k = N[1/Zeta[2], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
-
x=1/zeta(2); while(x, t=1\x+1; print1(t", "); x -= 1/t) \\ Charles R Greathouse IV, Nov 08 2013
A144984
Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).
Original entry on oeis.org
3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1
Cf.
A020762,
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
A145003
Denominators of an Egyptian fraction for 1/sqrt(29) = 0.185695338... (A020786).
Original entry on oeis.org
6, 53, 6221, 891830563, 950677235679298964, 2245647960428048728674383451656707058, 11636905679093503238901947768600244923435901955366623291532461461126244496
Offset: 1
Cf.
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[29], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
A073422
e = 1/a(0)+1/a(1)+1/a(2)+1/a(3)+... with each term a(n) being a positive or negative integer chosen so as to minimize the absolute difference between e and the partial sum.
Original entry on oeis.org
1, 1, 2, 5, 55, 9999, 3620211522, -26596490130011501642, 6462025287494698350477135653962718736877, -532695733923048954868620962844302990205269539900643893905567041090276924142488084
Offset: 0
a(4)=55 since e-(1/1)-(1/1)-(1/2)-(1/5)=0.0182818... is closer to 1/55=0.0181818... than to 1/54=0.0185185...
A144983
Denominators of greedy Egyptian fraction for 1/sqrt(3) (A020760).
Original entry on oeis.org
2, 13, 2341, 41001128, 3352885935529869, 17147396444547741051849884001699, 1847333322606272250132077006229901193256553492442739965269739579
Offset: 1
Cf.
A001466,
A006487,
A006524,
A006525,
A006526,
A020760,
A069139,
A069261,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[3], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a
A142725
Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...
Original entry on oeis.org
5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A142726
Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...
Original entry on oeis.org
5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144985
Denominators of an Egyptian fraction for 1/Sqrt[6]=0.408248290463863...
Original entry on oeis.org
3, 14, 287, 484228, 624850913463, 832896370765715143490072, 7620764031777359266114991754446899201236457828088, 74466937067918173179787895367258766085493130434332689333832927329763999409894621431449951498850730
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[6], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
Showing 1-10 of 28 results.
Comments