cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224244 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique and it contains the element 1.

Original entry on oeis.org

1, 1, 2, 2, 9, 17, 63, 261, 1088, 4374, 24583, 133861, 740303, 4514824, 29945555, 205127474, 1464586617, 10971233035, 86410874373, 708423380237, 6026435657580, 53117555943951, 485246803230148, 4589013046619689, 44819208415713035, 451184268041122808
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Examples

			a(5) = 9 because we have: {{1,2,3,4,5}}, {{1},{2,3,4,5}}, {{1,2},{3,4,5}}, {{1,3},{2,4,5}}, {{1,5},{2,3,4}}, {{1,4},{2,3,5}}, {{1},{2,3},{4,5}}, {{1},{2,5},{3,4}}, {{1},{2,4},{3,5}}.
		

Crossrefs

Cf. A224219.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add(
          binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n))
        end:
    a:= n-> `if`(n=0, 0, b(n, 1)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jul 07 2016
  • Mathematica
    nn=20;Drop[Range[0,nn]!CoefficientList[Series[Sum[Integrate[x^(k-1)/(k-1)! Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],x],{k,1,nn}],{x,0,nn}],x],1]
    (* Second program: *)
    b[n_, t_] := b[n, t] = If[n==0, 1, Sum[Binomial[n-1, i-1]*b[n-i, If[t==1, i + 1, t]], {i, t, n}]]; a[n_] := If[n==0, 0, b[n, 1]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>=1} Integral of x^(k-1)/(k-1)! * exp(exp(x) - Sum_{i=0..k} x^i/i!) dx.