A224244 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique and it contains the element 1.
1, 1, 2, 2, 9, 17, 63, 261, 1088, 4374, 24583, 133861, 740303, 4514824, 29945555, 205127474, 1464586617, 10971233035, 86410874373, 708423380237, 6026435657580, 53117555943951, 485246803230148, 4589013046619689, 44819208415713035, 451184268041122808
Offset: 1
Keywords
Examples
a(5) = 9 because we have: {{1,2,3,4,5}}, {{1},{2,3,4,5}}, {{1,2},{3,4,5}}, {{1,3},{2,4,5}}, {{1,5},{2,3,4}}, {{1,4},{2,3,5}}, {{1},{2,3},{4,5}}, {{1},{2,5},{3,4}}, {{1},{2,4},{3,5}}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..578
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; page 139.
Crossrefs
Cf. A224219.
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add( binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n)) end: a:= n-> `if`(n=0, 0, b(n, 1)): seq(a(n), n=1..30); # Alois P. Heinz, Jul 07 2016
-
Mathematica
nn=20;Drop[Range[0,nn]!CoefficientList[Series[Sum[Integrate[x^(k-1)/(k-1)! Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],x],{k,1,nn}],{x,0,nn}],x],1] (* Second program: *) b[n_, t_] := b[n, t] = If[n==0, 1, Sum[Binomial[n-1, i-1]*b[n-i, If[t==1, i + 1, t]], {i, t, n}]]; a[n_] := If[n==0, 0, b[n, 1]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
Formula
E.g.f.: Sum_{k>=1} Integral of x^(k-1)/(k-1)! * exp(exp(x) - Sum_{i=0..k} x^i/i!) dx.