cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A224246 The number of n-permutations that have a unique smallest cycle and this cycle contains the element 1.

Original entry on oeis.org

1, 1, 3, 8, 41, 194, 1309, 9022, 79057, 689588, 7462601, 80632826, 1021071193, 13120783948, 192752054377, 2848878770774, 47617784530529, 800500650553472, 14910497765819137, 281133366288649138, 5803224036600349801, 120681837753825004796, 2734647516979262677673, 62424209302423879016558, 1535507329367939907583057
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Examples

			a(4) = 8 because we have the permutations of {1,2,3,4} in cycle notation:
{{1}, {3,4,2}}, {{1}, {4,3,2}}, {{2,3,4,1}}, {{2,4,3,1}}, {{3,4,2,1}}, {{3,2,4,1}}, {{4,3,2,1}}, {{4,2,3,1}}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, add((i-1)!*
          binomial(n-1, i-1)*b(n-i, `if`(t=1, i+1, t)), i=t..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 07 2020
  • Mathematica
    nn=20; Drop[Range[0,nn]! CoefficientList[Series[Sum[Integrate[x^(k-1) Exp[-Sum[x^i/i,{i,1,k}]]/(1-x),x], {k,1,nn}], {x,0,nn}], x],1]

Formula

E.g.f.: Sum_{k>=1} Integral_((x^(k-1)/(k-1))*exp(-Sum_{i=1..k} x^i/i)/(1-x) dx).
Showing 1-1 of 1 results.