A224254 Full cycle lengths in the Collatz (3x+1) problem when the negative integers are used.
2, 2, 2, 2, 5, 2, 5, 2, 5, 5, 2, 2, 5, 5, 2, 2, 18, 5, 5, 5, 18, 2, 18, 2, 18, 5, 5, 5, 2, 2, 18, 2, 18, 18, 5, 5, 18, 5, 2, 5, 18, 18, 2, 2, 18, 18, 5, 2, 18, 18, 5, 5, 2, 5, 18, 5, 2, 2, 2, 2, 18, 18, 5, 2, 2, 18, 18, 18, 2, 5, 2, 5, 18, 18, 5, 5, 2, 2, 2, 5, 5
Offset: 1
Keywords
Examples
a(1) = 2 because the cycle -1 -> -2 -> -1... contains 2 distinct terms; a(5) = 5 because the cycle -5 -> -14 -> -7->-20 -> -5 ... contains 5 distinct terms; a(17) = 18 because the cycle -17 -> -50 -> -25->-74 -> -37 -> -110 -> -55->-164 -> -82 -> -41 -> -122->-61 -> -182 -> -91 -> -272->-136 -> -68 -> -34 -> -17... contains 18 distinct terms.
Links
- Wikipedia, Collatz conjecture
Programs
-
Python
import sympy def A224254(n): return next(sympy.cycle_length(lambda x:3*x+1 if x%2 else x//2,-n))[0] # Pontus von Brömssen, Jan 24 2021
Extensions
Data corrected by Pontus von Brömssen, Jan 24 2021
Comments