A224273 Decimal expansion of Baxter's four-coloring constant.
1, 4, 6, 0, 9, 9, 8, 4, 8, 6, 2, 0, 6, 3, 1, 8, 3, 5, 8, 1, 5, 8, 8, 7, 3, 1, 1, 7, 8, 4, 6, 0, 5, 9, 6, 9, 7, 0, 3, 8, 9, 3, 1, 3, 5, 5, 8, 0, 7, 4, 6, 1, 7, 8, 8, 2, 0, 5, 7, 7, 5, 4, 3, 4, 4, 4, 1, 5, 2, 1, 3, 5, 5, 8, 8, 5, 7, 3, 1, 4, 4, 0, 7, 7, 6, 5, 3
Offset: 1
Examples
1.46099848620631835815887311784605969703893135580746178820577543...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 413.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- R. J. Baxter, Colorings of a hexagonal lattice, Journal of Mathematical Physics, Vol. 11, No. 3 (1970), pp. 784-789.
- R. J. Baxter, q colourings of the triangular lattice, Journal of Physics A: Mathematical and General, Vol. 19, No. 14 (1986), pp. 2821-2839.
- Eric Weisstein's World of Mathematics, Baxter's Four-Coloring Constant.
Programs
-
Mathematica
RealDigits[3 Gamma[1/3]^3/(4 Pi^2), 10, 90][[1]]
-
PARI
3*gamma(1/3)^3/(4*Pi^2) \\ Michel Marcus, Mar 23 2020
Formula
Equals 1/Product_{n>=1} (1-1/(3n-1)^2) = 3*Gamma(1/3)^3/(4*Pi^2).
Equals 1/(2^(1/3)*A081760). - Kritsada Moomuang, Mar 15 2020
Equals 2*Pi/(sqrt(3)*Gamma(2/3)^3). - Vaclav Kotesovec, Mar 23 2020
Equals Product_{k>=1} (1 + 1/A152751(k)). - Amiram Eldar, Aug 13 2020
Equals Sum_{k>=0} binomial(-1/3, k)^2. - Gerry Martens, Jul 24 2023
Comments