A224295 Number of permutations of length n avoiding 12345 and 12354.
1, 1, 2, 6, 24, 118, 672, 4256, 29176, 212586, 1625704, 12930160, 106242392, 897210996, 7756325952, 68422701792, 614341492144, 5602330498170, 51798365474872, 484856381630288, 4589003801130456, 43870126242653020, 423219224419273888, 4116816114087389056, 40351014094161799568, 398270701521760650532
Offset: 0
Keywords
Links
- Jay Pantone, Table of n, a(n) for n = 0..790
- Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Combinatorial Exploration: An algorithmic framework for enumeration, arXiv:2202.07715 [math.CO], 2022.
- Michael H. Albert, Christian Bean, Anders Claesson, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, PermPAL Database
- Christian Bean, Émile Nadeau, Jay Pantone, and Henning Ulfarsson, Permutations avoiding bipartite partially ordered patterns have a regular insertion encoding, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024); arXiv preprint, arXiv:2312.07716 [math.CO], 2023.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- B. Nakamura, Approaches for enumerating permutations with a prescribed number of occurrences of patterns, arXiv 1301.5080 [math.CO], 2013.
Crossrefs
Cf. A006318.
Programs
-
Maple
# Programs can be obtained from author's personal website.
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 13 2020
Comments