A224302 Sorted perimeters of primitive Heronian triangles.
12, 16, 18, 30, 32, 36, 36, 40, 42, 42, 44, 48, 50, 50, 54, 54, 54, 56, 60, 64, 64, 64, 66, 68, 70, 70, 72, 76, 78, 80, 80, 84, 84, 84, 84, 84, 90, 90, 90, 96, 98, 98, 98, 98, 98, 98, 100, 100, 100, 104, 104, 108, 108, 108, 108, 108, 110, 112, 112, 112, 112
Offset: 1
Keywords
Examples
a(1) = 12 as it is the perimeter of the Heronian triangle having sides 3,4,5 and is the smallest Heronian triangle perimeter. a(2) = 16 as it is the perimeter of the Heronian triangle having sides 5,5,6 and is the 2nd smallest Heronian triangle perimeter.
References
- L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Dover, 2005, p. 196. [21a]
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10002
- L. E. Dickson, History of the Theory of Numbers, vol. II, 1952, see p. 196 [21 a].
- Michael Somos, Heronian Triangle Table
- Wikipedia, Heronian triangle
Programs
-
Mathematica
hQ[a_, b_, c_] := IntegerQ@Sqrt@Block[{s = (a + b + c)/2}, s (s - a) (s - b) (s - c)]; Sort[Reap[Do[If[GCD[a, b, c] == 1 && hQ[a, b, c], Sow@(a + b + c)], {a, 100}, {b, a}, {c, a - b + 1, b}]][[2, 1]]] (* The last numbers given may not be exactly in the right place. *) (* Jinyuan Wang, Feb 02 2020 *)
Extensions
Corrected and extended by Giovanni Resta, Apr 04 2013
Comments