cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A224322 Primes without "9" as a digit that remain prime when any single digit is replaced with "9".

Original entry on oeis.org

17, 107, 137, 347, 1013, 1433, 1613, 3767, 4337, 8623, 25633, 31114073
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 03 2013

Keywords

Comments

No more terms < 10^13.

Crossrefs

Cf. A224319-A224321. Subsequence of A038617.

Programs

  • Mathematica
    lst = {}; n = 9; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 25633}]; lst
    pr9Q[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,9]&&AllTrue[Table[ FromDigits[ ReplacePart[ idn,i->9]],{i,Length[idn]}],PrimeQ]]; Select[ Prime[Range[2*10^6]],pr9Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2015 *)

A224320 Primes without "3" as a digit that remain prime when any single digit is replaced with "3".

Original entry on oeis.org

2, 5, 7, 11, 17, 41, 47, 71, 107, 167, 179, 197, 449, 859, 1019, 1061, 1499, 2089, 16901, 47717, 56269, 86269, 11917049
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 03 2013

Keywords

Comments

No more terms < 10^13.

Crossrefs

Cf. A224319, A224321-A224322. Subsequence of A038611.

Programs

  • Mathematica
    lst = {}; n = 3; Do[If[PrimeQ[p], i = IntegerDigits[p]; If[FreeQ[i, n], t = 0; s = IntegerLength[p]; Do[If[PrimeQ@FromDigits@Insert[Drop[i, {d}], n, d], t++, Break[]], {d, s}]; If[t == s, AppendTo[lst, p]]]], {p, 86269}]; lst
    p3Q[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,3] && AllTrue[ FromDigits/@ Table[ReplacePart[idn,i->3],{i,IntegerLength[n]}],PrimeQ]]; Select[Prime[Range[10^6]],p3Q] (* The program uses the function AllTrue from Mathematica version 10 *) (* Harvey P. Dale, Aug 20 2014 *)
Showing 1-2 of 2 results.