A224336 Number of idempotent 5 X 5 0..n matrices of rank 4.
155, 805, 2555, 6245, 12955, 24005, 40955, 65605, 99995, 146405, 207355, 285605, 384155, 506245, 655355, 835205, 1049755, 1303205, 1599995, 1944805, 2342555, 2798405, 3317755, 3906245, 4569755, 5314405, 6146555, 7072805, 8099995, 9235205, 10485755, 11859205, 13363355
Offset: 1
Examples
Some solutions for n=3: ..1..0..0..1..0....0..0..0..0..0....0..2..3..2..2....1..0..0..1..0 ..0..1..0..1..0....1..1..0..0..0....0..1..0..0..0....0..1..0..2..0 ..0..0..1..2..0....3..0..1..0..0....0..0..1..0..0....0..0..1..2..0 ..0..0..0..0..0....2..0..0..1..0....0..0..0..1..0....0..0..0..0..0 ..0..0..0..2..1....3..0..0..0..1....0..0..0..0..1....0..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Row 5 of A224333.
Programs
-
PARI
Vec(-5*x*(x^4-6*x^3+16*x^2+6*x+31)/(x-1)^5 + O(x^100)) \\ Colin Barker, Sep 20 2014
Formula
a(n) = 10*n^4 + 40*n^3 + 60*n^2 + 40*n + 5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Colin Barker, Sep 20 2014
G.f.: -5*x*(x^4-6*x^3+16*x^2+6*x+31) / (x-1)^5. - Colin Barker, Sep 20 2014
E.g.f.: 5*(exp(x)*(1 + 30*x + 50*x^2 + 20*x^3 + 2*x^4) - 1). - Stefano Spezia, Aug 25 2025