cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224340 G.f.: exp( Sum_{n>=1} A113184(n^2)*x^n/n ), where A113184(n) = difference between sum of odd divisors of n and sum of even divisors of n.

Original entry on oeis.org

1, 1, 3, 7, 16, 30, 64, 120, 236, 434, 805, 1445, 2614, 4568, 8003, 13783, 23616, 39886, 67124, 111652, 184862, 303282, 495001, 801939, 1292968, 2070628, 3300796, 5232112, 8256081, 12961543, 20264168, 31535316, 48882592, 75455902, 116041910, 177775284, 271401683
Offset: 0

Views

Author

Paul D. Hanna, Apr 03 2013

Keywords

Comments

Compare to: exp(-Sum_{n>=1} A113184(n)*x^n/n ) = Sum_{n>=1} (-x)^(n*(n+1)/2).

Examples

			L.g.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 +...+ A113184(n^2)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sumdiv(k^2, d, (-1)^d*d)*(-x)^k/k)+x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", "))

Formula

Logarithmic derivative yields A224339.