cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A225925 G.f.: exp( Sum_{n>=1} A002129(n^2)*x^n/n ), where A002129(n) is the excess of sum of odd divisors of n over sum of even divisors of n.

Original entry on oeis.org

1, 1, -2, 2, -1, -7, 8, -14, 1, 11, -23, 43, -54, 38, 17, -55, 162, -198, 257, -175, 69, 141, -518, 764, -1049, 1215, -1241, 549, 161, -1625, 3192, -5176, 6782, -7568, 7267, -4263, -788, 8394, -17866, 29782, -39041, 46101, -45857, 36551, -14591, -20937, 70638, -129520, 190994, -245846, 280560
Offset: 0

Views

Author

Paul D. Hanna, May 20 2013

Keywords

Comments

Compare to: Sum_{n>=0} x^(n*(n+1)/2) = exp( Sum_{n>=1} A002129(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + x - 2*x^2 + 2*x^3 - x^4 - 7*x^5 + 8*x^6 - 14*x^7 + x^8 +...
where
log(A(x)) = x - 5*x^2/2 + 13*x^3/3 - 29*x^4/4 + 31*x^5/5 - 65*x^6/6 + 57*x^7/7 - 125*x^8/8 + 121*x^9/9 - 155*x^10/10 +...+ A002129(n^2)*x^n/n +...
		

Crossrefs

Cf. A224340, A224339, A002129; variant: A215603.

Programs

  • PARI
    {A002129(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*d))}
    {a(n)=polcoeff(exp(sum(k=1,n,A002129(k^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

A224339 Absolute difference between sum of odd divisors of n^2 and sum of even divisors of n^2.

Original entry on oeis.org

1, 5, 13, 29, 31, 65, 57, 125, 121, 155, 133, 377, 183, 285, 403, 509, 307, 605, 381, 899, 741, 665, 553, 1625, 781, 915, 1093, 1653, 871, 2015, 993, 2045, 1729, 1535, 1767, 3509, 1407, 1905, 2379, 3875, 1723, 3705, 1893, 3857, 3751, 2765, 2257, 6617, 2801, 3905, 3991, 5307
Offset: 1

Views

Author

Paul D. Hanna, Apr 03 2013

Keywords

Comments

Multiplicative because A113184 is.
Logarithmic derivative of A224340.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 + 155*x^10/10 +...
where
exp(L(x)) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 + 236*x^8 + 434*x^9 + 805*x^10 +...+ A224340(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    dif[n_]:=Module[{divs=Divisors[n^2],od,ev},od=Total[Select[divs,OddQ]];ev=Total[Select[divs,EvenQ]];Abs[od-ev]]; Array[dif,60] (* Harvey P. Dale, Jul 16 2015 *)
    f[p_, e_] := If[p == 2, 2^(2*e + 1) - 3, (p^(2*e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 01 2022 *)
  • PARI
    {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^2, d, (-1)^d*d))}
    for(n=1,64,print1(a(n),", "))
    
  • PARI
    a(n) = if(n%2, sigma(n^2), 4*sigma(n^2/2) - sigma(n^2)) \\ Andrew Howroyd, Jul 28 2018

Formula

a(n) = (-1)^n * Sum_{d|n^2} (-1)^d * d.
a(n) = A113184(n^2).
a(n) = sigma(n^2) for odd n; a(n) = 4*sigma(n^2/2) - sigma(n^2) for even n. - Andrew Howroyd, Jul 28 2018
Multiplicative with a(p^e) = 2^(2*e+1)-3 if p=2, and (p^(2*e+1)-1)/(p-1) otherwise. - Amiram Eldar, Jul 01 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (9*zeta(3))/(2*Pi^2) = 0.548072... . - Amiram Eldar, Oct 13 2022
Showing 1-2 of 2 results.