cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224364 G.f.: exp( Sum_{n>=1} A064027(n)*x^n/n ), where A064027(n) = (-1)^n*Sum_{d|n}(-1)^d*d^2.

Original entry on oeis.org

1, 1, 2, 5, 10, 18, 32, 59, 106, 181, 305, 518, 867, 1418, 2301, 3724, 5966, 9448, 14862, 23263, 36165, 55802, 85609, 130732, 198574, 299941, 450946, 675153, 1006395, 1493598, 2207928, 3251926, 4771934, 6977018, 10166502, 14766512, 21379861, 30859013, 44409543, 63729443
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2013

Keywords

Comments

"Number of the pyramid partition of pyramid partitions obtained from the fundamental pyramid partition after the removal of n bricks." [From the Bouttier et al. reference] - Joerg Arndt, Jul 03 2014

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 32*x^6 + 59*x^7 +...
where
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 26*x^5/5 + 30*x^6/6 + 50*x^7/7 + 83*x^8/8 + 91*x^9/9 + 78*x^10/10 +...+ A064027(n)*x^n/n +...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575.

Crossrefs

Cf. A064027.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1) / (1 - x^(2*k))^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 14 2017 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n, sumdiv(k, d, (-1)^d*d^2)*(-x)^k/k)+x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    N=66; q='q+O('q^N); Vec(prod(k=1,N, (1+q^(2*k-1))^(2*k-1)/(1-q^(2*k))^(2*k) )) \\ Joerg Arndt, Jul 03 2014

Formula

G.f.: Product_{k>=1} (1+q^(2*k-1))^(2*k-1) / (1-q^(2*k))^(2*k). - Joerg Arndt, Jul 03 2014
a(n) ~ exp(1/6 + 3 * 2^(-5/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (2^(25/36) * A^2 * sqrt(3*Pi) * n^(13/18)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 14 2017