cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064027 a(n) = (-1)^n*Sum_{d|n} (-1)^d*d^2.

Original entry on oeis.org

1, 3, 10, 19, 26, 30, 50, 83, 91, 78, 122, 190, 170, 150, 260, 339, 290, 273, 362, 494, 500, 366, 530, 830, 651, 510, 820, 950, 842, 780, 962, 1363, 1220, 870, 1300, 1729, 1370, 1086, 1700, 2158, 1682, 1500, 1850, 2318, 2366, 1590, 2210, 3390, 2451, 1953
Offset: 1

Views

Author

Vladeta Jovovic, Sep 11 2001

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 19*x^4/4 + 26*x^5/5 + 30*x^6/6 + ...
where exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 32*x^6 + 59*x^7 + 106*x^8 + 181*x^9 + ... + A224364(n)*x^n + ... - _Paul D. Hanna_, Apr 04 2013
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[k^2*x^k/(1-(-x)^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Mathematica
    a[n_] := (-1)^n DivisorSum[n, (-1)^# * #^2 &]; Array[a, 50] (* Jean-François Alcover, Dec 23 2015 *)
    a[n_] := If[OddQ[n], 1, (1 - 6/(4^(IntegerExponent[n, 2] + 1) - 1))] * DivisorSigma[2, n]; Array[a, 100] (* Amiram Eldar, Sep 21 2023 *)
  • PARI
    {a(n)=if(n<1, 0, (-1)^n*sumdiv(n^1, d, (-1)^d*d^2))} \\ Paul D. Hanna, Apr 04 2013
    

Formula

Multiplicative with a(2^e) = (4^(e+1)-7)/3, a(p^e) = (p^(2*e+2)-1)/(p^2-1), p > 2.
a(n) = (-1)^n*(A001157(n) - 2*A050999(n)).
Logarithmic derivative of A224364. - Paul D. Hanna, Apr 04 2013
Bisection: a(2*k-1) = A001157(2*k-1), a(2*k) = 4*A001157(k) - A050999(2*k), k >= 1. In the Hardy reference a(n) = sigma^*2(n). - _Wolfdieter Lang, Jan 07 2017
G.f.: Sum_{k>=1} k^2*x^k/(1 - (-x)^k). - Ilya Gutkovskiy, Nov 09 2018
Sum_{k=1..n} a(k) ~ 7 * zeta(3) * n^3 / 24. - Vaclav Kotesovec, Nov 10 2018
Dirichlet g.f.: zeta(s) * zeta(s-2) * (1 - 1/2^(s-1) + 1/2^(2*s-3)). - Amiram Eldar, Sep 21 2023

A284467 Expansion of Product_{k>=1} (1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k).

Original entry on oeis.org

1, 1, -2, 1, 2, -2, 0, -5, 10, 1, -15, 10, -1, 18, -39, 4, 50, -24, -14, -69, 165, -70, -83, -20, 154, 161, -550, 313, 55, 410, -960, 102, 1074, -406, -506, -1344, 3581, -1791, -833, -1833, 4995, 205, -6993, 2982, 2461, 7649, -19791, 9495, 4986, 9581, -26745, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    P:= mul((1+x^(2*k-1))^(2*k-1)/(1+x^(2*k))^(2*k),k=1..N/2):
    S:= series(P,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Apr 16 2017
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^(2*k-1)/(1 + x^(2*k))^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 15 2017 *)

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, Jun 20 2018

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A281683 Expansion of Product_{k>=1} (1 - x^(2*k-1))^(2*k-1)/(1 - x^(2*k))^(2*k).

Original entry on oeis.org

1, -1, 2, -5, 10, -18, 32, -59, 106, -181, 305, -518, 867, -1418, 2301, -3724, 5966, -9448, 14862, -23263, 36165, -55802, 85609, -130732, 198574, -299941, 450946, -675153, 1006395, -1493598, 2207928, -3251926, 4771934, -6977018, 10166502, -14766512, 21379861
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^k/(1 - x^(2*k))^(4*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)^(4*k)*(1 - x^k)^(3*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)

Formula

a(n) = (-1)^n * A224364(n).
a(n) ~ (-1)^n * exp(1/6 + 3 * 2^(-5/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (2^(25/36) * A^2 * sqrt(3*Pi) * n^(13/18)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 09 2017
Showing 1-4 of 4 results.