A281781 Expansion of Product_{k>=1} (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1).
1, 1, -1, 2, -1, -2, 6, -6, 3, -1, -1, 9, -18, 23, -27, 23, -1, -24, 49, -89, 121, -117, 96, -60, -18, 138, -275, 408, -525, 592, -566, 444, -181, -276, 854, -1485, 2154, -2765, 3157, -3131, 2571, -1468, -301, 2813, -5860, 9153, -12386, 15082, -16664, 16558, -14125
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *) nmax = 50; CoefficientList[Series[Product[(1 - x^(2*k))^(4*k)/(1 - x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *) nmax = 50; CoefficientList[Series[Product[(1 + x^k)^(4*k)*(1 - x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 09 2017 *)
-
PARI
x='x+O('x^51); Vec(prod(k=1, 50, (1 - x^(2*k))^(2*k)/(1 - x^(2*k-1))^(2*k-1))) \\ Indranil Ghosh, Apr 14 2017
Formula
G.f.: exp(Sum_{k>=1} x^k/(k*(1 + x^k)^2)). - Ilya Gutkovskiy, May 28 2018