cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A224368 Number of n X n 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

3, 54, 1838, 77793, 3607078, 174854516, 8684742989, 437757725110, 22283207886650, 1142441203546438, 58904154561219603, 3051594326913582293, 158760240705250821719, 8291742411017787312243, 434658935860309950718887
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Diagonal of A224374

Examples

			Some solutions for n=3
..0..0..0....2..0..0....0..0..0....1..2..0....2..1..1....1..0..0....1..1..0
..0..1..1....2..1..0....1..0..0....2..2..1....2..1..0....1..0..0....2..0..0
..1..1..0....1..1..2....2..2..1....2..1..0....1..2..0....0..2..0....1..1..2
		

A224369 Number of n X 3 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

22, 218, 1838, 15540, 132236, 1126072, 9588028, 81634704, 695055928, 5917866680, 50386093544, 428998916880, 3652596505952, 31099055733376, 264784589835472, 2254437550085472, 19194805371407680, 163429034985577568
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Column 3 of A224374.

Examples

			Some solutions for n=3:
..2..0..0....0..1..1....0..1..1....1..2..0....0..1..0....1..0..0....2..0..0
..0..0..1....1..1..0....2..1..0....2..1..0....2..1..0....0..1..0....2..1..0
..2..2..2....1..2..2....1..2..1....2..1..1....1..2..2....1..1..2....1..2..1
		

Crossrefs

Cf. A224374.

Formula

Empirical: a(n) = 10*a(n-1) - 16*a(n-2) + 30*a(n-3) - 14*a(n-4) + 12*a(n-5).
Empirical g.f.: 2*x*(1 + x + x^2)*(11 - 12*x + 6*x^2) / (1 - 10*x + 16*x^2 - 30*x^3 + 14*x^4 - 12*x^5). - Colin Barker, Aug 30 2018

A224370 Number of n X 4 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

46, 698, 7608, 77793, 800309, 8297747, 86251004, 896856330, 9325161494, 96954549463, 1008030060622, 10480399768714, 108963825909899, 1132887953497801, 11778544075116434, 122460568078334321
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Comments

Column 4 of A224374.

Examples

			Some solutions for n=3:
..0..1..2..2....1..0..0..0....1..1..1..1....0..1..1..0....0..0..1..2
..2..2..2..2....2..0..0..0....2..1..1..0....1..1..1..0....0..1..2..2
..2..2..2..1....2..2..0..0....1..1..2..1....2..2..2..1....1..2..2..0
		

Crossrefs

Cf. A224374.

Formula

Empirical: a(n) = 15*a(n-1) - 58*a(n-2) + 105*a(n-3) + 20*a(n-4) - 183*a(n-5) + 220*a(n-6) + 240*a(n-7) for n>8.
Empirical g.f.: x*(46 + 8*x - 194*x^2 - 673*x^3 + 468*x^4 + 724*x^5 - 90*x^6 - 45*x^7) / (1 - 15*x + 58*x^2 - 105*x^3 - 20*x^4 + 183*x^5 - 220*x^6 - 240*x^7). - Colin Barker, Aug 30 2018

A224371 Number of nX5 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

86, 1915, 26314, 311367, 3607078, 42132769, 495660330, 5848449149, 69064897862, 815702088065, 9633856474182, 113778532335717, 1343744395119438, 15869813554422065, 187424656004529134, 2213510515188443829
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 5 of A224374

Examples

			Some solutions for n=3
..1..0..0..0..0....0..1..1..1..0....1..0..0..0..0....1..0..0..0..0
..0..0..2..0..0....2..2..2..1..1....1..2..2..2..2....0..0..1..0..0
..0..2..2..2..1....2..2..2..1..0....2..2..2..2..1....1..2..2..2..1
		

Formula

Empirical: a(n) = 21*a(n-1) -141*a(n-2) +427*a(n-3) -546*a(n-4) +526*a(n-5) -2124*a(n-6) +3302*a(n-7) +2396*a(n-8) +7504*a(n-9) +580*a(n-10) +1632*a(n-11) for n>13

A224372 Number of nX6 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

148, 4690, 80819, 1092281, 13831334, 174854516, 2231009824, 28645726612, 368818252942, 4752723627808, 61255849072312, 789494767364269, 10175118017926314, 131136401564099516, 1690070260377561269
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 6 of A224374

Examples

			Some solutions for n=3
..0..0..0..1..2..1....0..1..1..1..1..1....0..0..0..0..1..2....0..2..0..0..0..0
..2..2..2..2..1..0....2..1..1..1..1..1....1..1..1..2..2..1....2..1..1..0..0..0
..2..2..2..2..2..2....1..1..2..2..1..1....1..1..2..2..2..2....1..1..0..0..0..0
		

Formula

Empirical: a(n) = 28*a(n-1) -283*a(n-2) +1386*a(n-3) -3562*a(n-4) +4940*a(n-5) -3840*a(n-6) -14256*a(n-7) +50007*a(n-8) -26386*a(n-9) +141154*a(n-10) +250789*a(n-11) +41356*a(n-12) +274344*a(n-13) +134400*a(n-14) for n>18

A224373 Number of nX7 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

239, 10511, 227112, 3518302, 48166179, 644368221, 8684742989, 118171436342, 1617034882854, 22180823169132, 304470584215636, 4179566726619035, 57366850907237080, 787294489483452053, 10803851806245324942
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Column 7 of A224374

Examples

			Some solutions for n=3
..0..0..1..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..1..1..0
..0..1..1..1..1..1..0....0..1..1..1..1..2..1....0..1..2..1..1..0..0
..1..1..2..2..2..2..2....1..2..2..2..2..2..1....1..2..1..1..1..1..1
		

Formula

Empirical: a(n) = 36*a(n-1) -505*a(n-2) +3667*a(n-3) -15271*a(n-4) +38113*a(n-5) -59621*a(n-6) +53813*a(n-7) -125335*a(n-8) +657330*a(n-9) -1326014*a(n-10) +2644047*a(n-11) +3529521*a(n-12) +7803900*a(n-13) +959690*a(n-14) +28175350*a(n-15) +27269532*a(n-16) +18725976*a(n-17) +1826832*a(n-18) +1263744*a(n-19) for n>24

A224375 Number of 3Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

27, 324, 1838, 7608, 26314, 80819, 227112, 593400, 1455898, 3378085, 7455007, 15725041, 31840088, 62123439, 117194882, 214407666, 381424761, 661365902, 1120086056, 1856304530, 3015496746, 4808693047, 7537606592, 11627841824
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 3 of A224374

Examples

			Some solutions for n=3
..1..0..0....0..0..0....0..2..2....0..2..1....0..0..0....2..0..0....1..2..0
..0..1..0....2..1..0....2..2..0....2..1..0....0..0..1....1..0..0....2..2..1
..2..2..0....2..1..1....2..2..2....1..1..0....0..1..2....0..1..1....2..2..1
		

Formula

Empirical: a(n) = (1/19160064)*n^12 + (1/456192)*n^11 + (2287/43545600)*n^10 + (215/290304)*n^9 + (20603/2903040)*n^8 + (923/17920)*n^7 + (14627101/43545600)*n^6 + (400091/207360)*n^5 + (16965289/2177280)*n^4 + (3069023/362880)*n^3 + (13912639/1663200)*n^2 + (21001/3465)*n - 6

A224376 Number of 4 X n 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

81, 1944, 15540, 77793, 311367, 1092281, 3518302, 10643789, 30548895, 83538706, 218139823, 544930741, 1304961768, 3002671615, 6654904188, 14242413828, 29504608642, 59301307852, 115889490174, 220645337145, 410024971049
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2013

Keywords

Examples

			Some solutions for n=3
..0..0..0....2..0..0....2..0..0....0..0..0....1..2..1....1..1..1....0..1..2
..1..1..2....2..0..0....0..0..0....1..0..0....2..2..1....1..2..2....1..2..0
..1..2..1....0..0..0....0..1..1....2..1..1....2..1..1....2..2..2....2..2..0
..2..2..1....2..1..0....2..2..1....2..2..2....2..1..1....2..2..0....2..2..2
		

Crossrefs

Row 4 of A224374.

Formula

Empirical: a(n) = (1/106748928000)*n^16 + (1/1482624000)*n^15 + (7/266872320)*n^14 + (127/197683200)*n^13 + (315179/28740096000)*n^12 + (24499/177408000)*n^11 + (89507/65318400)*n^10 + (112109/9676800)*n^9 + (68633371/746496000)*n^8 + (11395841/16128000)*n^7 + (6723664007/1437004800)*n^6 + (295741651/13305600)*n^5 + (262119224347/5189184000)*n^4 - (16331232329/1297296000)*n^3 + (12600631/343200)*n^2 + (38790413/360360)*n - 166 for n>2.

A224377 Number of 5Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

243, 11664, 132236, 800309, 3607078, 13831334, 48166179, 158023549, 497580715, 1514359253, 4458436636, 12678906115, 34773215421, 91905020703, 234118674737, 575345712656, 1365918264285, 3137981575530, 6988511558308, 15115188591949
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 5 of A224374

Examples

			Some solutions for n=3
..1..2..0....0..0..0....1..1..1....2..0..0....1..0..0....0..0..1....1..0..0
..2..0..0....1..2..0....1..2..0....1..0..0....1..1..1....0..1..0....0..1..0
..0..0..0....2..0..0....2..0..0....1..0..0....2..2..2....2..1..0....2..1..0
..0..0..0....1..1..1....2..2..1....2..1..0....2..2..2....1..1..1....2..1..0
..2..2..1....2..1..0....2..2..0....1..2..2....2..2..1....2..2..2....2..2..1
		

Formula

Empirical: a(n) = (1/1379196149760000)*n^20 + (1/12538146816000)*n^19 + (467/101624979456000)*n^18 + (223/1302884352000)*n^17 + (67777/14944849920000)*n^16 + (8993/99632332800)*n^15 + (29436877/20922789888000)*n^14 + (26572241/1494484992000)*n^13 + (439786693/2299207680000)*n^12 + (20411147/10948608000)*n^11 + (8076494051/459841536000)*n^10 + (1128125897/6967296000)*n^9 + (3054806701103/2179457280000)*n^8 + (547815604487/53374464000)*n^7 + (2418856630291/41513472000)*n^6 + (950711499611/4790016000)*n^5 + (286543564329947/1323241920000)*n^4 - (4310267256629/5513508000)*n^3 + (49217261945707/48886437600)*n^2 + (184937368403/116396280)*n - 3058 for n>3

A224378 Number of 6Xn 0..2 arrays with rows unimodal and antidiagonals nondecreasing.

Original entry on oeis.org

729, 69984, 1126072, 8297747, 42132769, 174854516, 644368221, 2212959866, 7296488462, 23473954511, 74124038709, 229565868000, 694675751863, 2045339262040, 5840640774160, 16145608364197, 43177424328109
Offset: 1

Views

Author

R. H. Hardin Apr 05 2013

Keywords

Comments

Row 6 of A224374

Examples

			Some solutions for n=3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..1..0....0..0..2....1..1..0....1..0..0....1..0..0....0..1..0....0..0..0
..2..2..0....0..2..0....1..0..0....0..2..1....2..2..2....2..2..0....2..1..0
..2..0..0....2..0..0....2..0..0....2..2..1....2..2..0....2..0..0....1..1..2
..2..1..1....1..0..0....0..2..2....2..2..1....2..2..0....1..0..0....1..2..0
..2..1..0....0..1..0....2..2..0....2..2..1....2..2..2....2..1..0....2..1..0
		

Formula

Empirical: a(n) = (1/35608838483312640000)*n^24 + (1/228261785149440000)*n^23 + (2993/8515157028618240000)*n^22 + (1189/64508765368320000)*n^21 + (565139/810967336058880000)*n^20 + (50213/2502985605120000)*n^19 + (102275011/224083079700480000)*n^18 + (630450937/74694359900160000)*n^17 + (6860509793/52725430517760000)*n^16 + (7572768857/4393785876480000)*n^15 + (1975549547/96566722560000)*n^14 + (5979889787/26153487360000)*n^13 + (129750858133763/52725430517760000)*n^12 + (8852225741519/337983528960000)*n^11 + (1757155928198569/6590678814720000)*n^10 + (11208897154284701/4393785876480000)*n^9 + (15905213251807771/762187345920000)*n^8 + (60693804091491173/444609285120000)*n^7 + (56813409423945822743/88699552381440000)*n^6 + (45278410760324474101/29566517460480000)*n^5 - (4851359450955021973/4927752910080000)*n^4 - (59510428654061699/5133075948000)*n^3 + (926682017129053/38440617600)*n^2 + (89190882279703/5354228880)*n - 49724 for n>4
Showing 1-10 of 11 results. Next