cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224455 The hyper-Wiener index of the linear phenylene with n hexagons.

Original entry on oeis.org

42, 396, 1656, 4740, 10890, 21672, 38976, 65016, 102330, 153780, 222552, 312156, 426426, 569520, 745920, 960432, 1218186, 1524636, 1885560, 2307060, 2795562, 3357816, 4000896, 4732200, 5559450, 6490692, 7534296, 8698956, 9993690, 11427840, 13011072, 14753376, 16665066, 18756780, 21039480
Offset: 1

Views

Author

Emeric Deutsch, Apr 10 2013

Keywords

Comments

a(2) and a(5) have been checked by the direct computation of the hyper-Wiener index (using Maple).

References

  • I. Gutman, The topological indices of linear phenylenes, J. Serb. Chem. Soc., 60, No. 2, 1995, 99-104.

Crossrefs

Cf. A224454.

Programs

  • Maple
    a := proc (n) options operator, arrow: (3/2)*n*(n+1)*(9*n^2+3*n+2) end proc: seq(a(n), n = 1 .. 35);
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1}, {42,396,1656,4740,10890}, 100] (* or *) Table[(3/2)*n*(n+1)*(9*n^2 + 3*n + 2), {n,1,100}] (* G. C. Greubel, Dec 08 2016 *)
  • PARI
    Vec(6*x*(7 + 31*x + 16*x^2)/(1-x)^5 + O(x^50)) \\ G. C. Greubel, Dec 08 2016

Formula

a(n) = (3/2)*n*(n+1)*(9*n^2 + 3*n + 2).
G.f.: 6*x*(7 + 31*x + 16*x^2)/(1-x)^5.
The Hosoya polynomial of the linear phenylene with n hexagons is nt(t^3-t^2-4t-8)/(t-1) + 2t(t+1)(t^(3n)-1)/(t-1)^2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - G. C. Greubel, Dec 08 2016