A224491 Smallest k such that k*2*p(n)^2-1=q is prime k*2*q^2-1=r k*2*r^2-1=s, r and s are also prime.
705, 1, 306, 390, 2539, 526, 1939, 439, 7048, 286, 561, 985, 90, 2385, 2089, 328, 2266, 664, 4245, 2451, 453, 391, 411, 406, 4068, 4975, 8151, 199, 834, 4423, 169, 76, 5710, 861, 3930, 1659, 1246, 2838, 750, 153, 8664, 3730, 1195, 7815, 1746, 1735, 594, 985
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..5600
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[k*2*r^2 - 1], Return[k]]]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Apr 12 2013 *)
Extensions
Typo in name fixed by Zak Seidov, Apr 11 2013