A224492 Smallest k such that k*2*p(n)^2-1=q is prime, k*2*q^2-1=r, k*2*r^2-1=s, k*2*r^2-1=t, r, s, and t are also prime.
5103, 36189, 7315, 29608, 128115, 3496, 64590, 143079, 83919, 5586, 13209, 2833, 235339, 61621, 164349, 2668, 84574, 1140, 47335, 108079, 7978, 181366, 146140, 2616, 165864, 86100, 11455, 8925, 23191, 197938, 28194, 229309, 196236, 274186
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..80
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[s = k*2*r^2 - 1] && PrimeQ[k*2*s^2 - 1], Return[k]]]; Table[Print[an = a[n]]; an, {n, 1, 34}] (* Jean-François Alcover, Apr 12 2013 *)
Extensions
Typo in name fixed by Zak Seidov, Apr 11 2013
Comments