cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224492 Smallest k such that k*2*p(n)^2-1=q is prime, k*2*q^2-1=r, k*2*r^2-1=s, k*2*r^2-1=t, r, s, and t are also prime.

Original entry on oeis.org

5103, 36189, 7315, 29608, 128115, 3496, 64590, 143079, 83919, 5586, 13209, 2833, 235339, 61621, 164349, 2668, 84574, 1140, 47335, 108079, 7978, 181366, 146140, 2616, 165864, 86100, 11455, 8925, 23191, 197938, 28194, 229309, 196236, 274186
Offset: 1

Views

Author

Pierre CAMI, Apr 08 2013

Keywords

Comments

conjecture: a(n) exist for all n
t=k*2*(k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1)^2-1
s=k*2*(k*2*(k*2*p(n)^2-1)^2-1)^2-1
r=k*2*(k*2*p(n)^2-1)^2-1
q=k*2*p(n)^2-1

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[q = k*2*p^2 - 1] && PrimeQ[r = k*2*q^2 - 1] && PrimeQ[s = k*2*r^2 - 1] && PrimeQ[k*2*s^2 - 1], Return[k]]]; Table[Print[an = a[n]]; an, {n, 1, 34}] (* Jean-François Alcover, Apr 12 2013 *)

Extensions

Typo in name fixed by Zak Seidov, Apr 11 2013