A224493 Smallest k such that k*2*p(n)^2+1 is prime.
2, 1, 2, 2, 3, 2, 6, 15, 12, 6, 8, 2, 5, 6, 2, 14, 3, 23, 2, 5, 2, 3, 5, 3, 6, 11, 2, 9, 3, 5, 6, 3, 14, 8, 5, 6, 2, 2, 5, 9, 8, 11, 3, 2, 11, 3, 6, 5, 6, 5, 2, 5, 3, 8, 15, 14, 3, 5, 20, 5, 6, 14, 14, 8, 5, 2, 8, 2, 6, 18, 14, 3, 6, 9, 5, 12, 3, 9, 15, 18, 6, 6, 3
Offset: 1
Keywords
Links
- Pierre CAMI, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, p = Prime[n]; If[PrimeQ[k*2*p^2 + 1], Return[k]]]; Table[ a[n] , {n, 1, 83}] (* Jean-François Alcover, Apr 12 2013 *) sk[n_]:=Module[{k=1},While[!PrimeQ[2*k*n^2+1],k++];k]; Table[sk[n],{n,Prime[ Range[ 90]]}] (* Harvey P. Dale, Sep 22 2019 *)