cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224510 Number of simple labeled graphs on {1,2,...,n} such that the node labeled with 1 is in the same component as the node labeled with 2.

Original entry on oeis.org

0, 0, 1, 5, 48, 874, 30264, 2019680, 263757552, 68148453616, 35042313517056, 35957170070748800, 73714223732206510848, 302083108644327384484864, 2475273899774743284992553984, 40559859846438312840086623738880, 1329146799084147159829387611140308992
Offset: 0

Views

Author

Geoffrey Critzer, Apr 08 2013

Keywords

Comments

A001187(n) < a(n) < A006125(n) for n>2.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, 2^binomial(n, 2)-
          add(binomial(n, k)*k*b(k)*2^binomial(n-k, 2), k=0..n-1)/n)
        end:
    a:= n-> add(binomial(n-2, k)*b(k+2)*2^binomial(n-k-2,2), k=0..n-2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 09 2013
  • Mathematica
    (* by brute force counting *) nn=10;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];a=Drop[Range[0,nn]!CoefficientList[Series[Log[g]+1,{x,0,nn}],x],1];f[list_]:=Product[a[[i]],{i,list}];Table[Total[Map[f,Map[Length,Select[SetPartitions[n],MemberQ[#[[1]],2]&],{2}]]],{n,2,nn}]
    (* or *)
    nn=30; g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn+2}];Range[0,nn]!CoefficientList[Series[D[D[Log[g]+1,x],x] g,{x,0,nn}],x]

Formula

a(n) = Sum_{k=0..n-2} C(n-2,k)*A001187(k+2)*A006125(n-k-2). - Alois P. Heinz, Apr 09 2013
E.g.f.: Double integral of A''(x)*B(x) dx^2 where A(x) is e.g.f. for A001187 and B(x) is e.g.f. for A006125. - Geoffrey Critzer, Apr 09 2013

Extensions

More terms from Alois P. Heinz, Apr 09 2013