A224524 Table read by antidiagonals: T(n,k) is the number of idempotent n X n 0..k matrices of rank 1.
1, 1, 6, 1, 10, 27, 1, 14, 69, 108, 1, 18, 123, 404, 405, 1, 22, 195, 892, 2155, 1458, 1, 26, 273, 1716, 5845, 10830, 5103, 1, 30, 375, 2732, 13525, 36042, 52241, 17496, 1, 34, 477, 4324, 24575, 99774, 213647, 244648, 59049, 1, 38, 603, 6060, 44545, 208146, 705215, 1232504, 1120599, 196830
Offset: 1
Examples
Some solutions for n=3, k=4: 1 0 0 0 4 4 0 0 0 0 4 2 1 2 1 0 0 0 0 1 0 0 0 0 0 1 1 3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 0 1 4 1 0 0 0
Links
- Robert Israel, Table of n, a(n) for n = 1..10011
Crossrefs
Column 1 is A027471(n+1).
Programs
-
Maple
f:= proc(n,k) local tot, a1, a0, a2, m,u; tot:= 0; for a1 from 1 to n do for a0 from 0 to n-a1 do a2:= n-a1-a0; if a0 = 0 then tot:= tot + n!/(a1!*a2!)*a1*(k-1)^a2 elif a2 = 0 then tot:= tot + n!/(a0!*a1!)*a1*(k+1)^a0 else u:= n!/(a0!*a1!*a2!)*a1; for m from 2 to k do tot:= tot + u*((m-1)^a2 - (m-2)^a2)*(floor(k/m)+1)^a0 od fi od od; tot end proc: seq(seq(f(i,j-i),i=1..j-1),j=2..20); # Robert Israel, Dec 15 2019
-
Mathematica
Unprotect[Power]; 0^0 = 1; Protect[Power]; f[n_, k_] := Module[{tot, a1, a0, a2, m, u}, tot = 0; For[a1 = 1, a1 <= n, a1++, For[a0 = 0, a0 <= n - a1, a0++, a2 = n - a1 - a0; Which[a0 == 0, tot = tot + n!/(a1!*a2!)*a1*(k - 1)^a2, a2 == 0, tot = tot + n!/(a0!*a1!)*a1*(k + 1)^a0, True, u = n!/(a0!*a1!*a2!)*a1; For[m = 2, m <= k, m++, tot = tot + u*((m - 1)^a2 - (m - 2)^a2)*(Floor[k/m] + 1)^a0]]]]; tot]; Table[Table[f[i, j - i], {i, 1, j - 1}], {j, 2, 20}] // Flatten (* Jean-François Alcover, Feb 04 2023, after Robert Israel *)
Comments