cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224524 Table read by antidiagonals: T(n,k) is the number of idempotent n X n 0..k matrices of rank 1.

Original entry on oeis.org

1, 1, 6, 1, 10, 27, 1, 14, 69, 108, 1, 18, 123, 404, 405, 1, 22, 195, 892, 2155, 1458, 1, 26, 273, 1716, 5845, 10830, 5103, 1, 30, 375, 2732, 13525, 36042, 52241, 17496, 1, 34, 477, 4324, 24575, 99774, 213647, 244648, 59049, 1, 38, 603, 6060, 44545, 208146, 705215, 1232504, 1120599, 196830
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2013

Keywords

Comments

Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
6, 10, 14, 18, 22, 26, 30, 34, 38, ...
27, 69, 123, 195, 273, 375, 477, 603, ...
108, 404, 892, 1716, 2732, 4324, 6060, ...
405, 2155, 5845, 13525, 24575, 44545, ...
1458, 10830, 36042, 99774, 208146, ...
5103, 52241, 213647, 705215, ...
17496, 244648, ...
59049, ...
...

Examples

			Some solutions for n=3, k=4:
  1 0 0   0 4 4   0 0 0   0 4 2   1 2 1   0 0 0   0 1 0
  0 0 0   0 1 1   3 1 0   0 0 0   0 0 0   0 0 0   0 1 0
  1 0 0   0 0 0   0 0 0   0 2 1   0 0 0   1 4 1   0 0 0
		

Crossrefs

Column 1 is A027471(n+1).

Programs

  • Maple
    f:= proc(n,k)
      local tot, a1, a0, a2, m,u;
      tot:= 0;
      for a1 from 1 to n do
        for a0 from 0 to n-a1 do
          a2:= n-a1-a0;
          if a0 = 0 then tot:= tot + n!/(a1!*a2!)*a1*(k-1)^a2
          elif a2 = 0 then tot:= tot + n!/(a0!*a1!)*a1*(k+1)^a0
          else
            u:= n!/(a0!*a1!*a2!)*a1;
            for m from 2 to k do
              tot:= tot + u*((m-1)^a2 - (m-2)^a2)*(floor(k/m)+1)^a0
            od
          fi
      od od;
      tot
    end proc:
    seq(seq(f(i,j-i),i=1..j-1),j=2..20); # Robert Israel, Dec 15 2019
  • Mathematica
    Unprotect[Power]; 0^0 = 1; Protect[Power];
    f[n_, k_] := Module[{tot, a1, a0, a2, m, u}, tot = 0; For[a1 = 1, a1 <= n, a1++, For[a0 = 0, a0 <= n - a1, a0++, a2 = n - a1 - a0; Which[a0 == 0, tot = tot + n!/(a1!*a2!)*a1*(k - 1)^a2, a2 == 0, tot = tot + n!/(a0!*a1!)*a1*(k + 1)^a0, True, u = n!/(a0!*a1!*a2!)*a1; For[m = 2, m <= k, m++, tot = tot + u*((m - 1)^a2 - (m - 2)^a2)*(Floor[k/m] + 1)^a0]]]]; tot];
    Table[Table[f[i, j - i], {i, 1, j - 1}], {j, 2, 20}] // Flatten (* Jean-François Alcover, Feb 04 2023, after Robert Israel *)