cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224578 Decimal expansion of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 3, 2, 9, 4, 2, 2, 1, 6, 7, 9, 3, 6, 1, 7, 3, 5, 8, 1, 8, 7, 9, 4, 1, 7, 7, 6, 8, 1, 0, 5, 6, 3, 6, 2, 4, 4, 8, 0, 8, 4, 9, 5, 8, 3, 3, 2, 9, 2, 0, 0, 0, 8, 3, 0, 4, 4, 2, 6, 2, 1, 4, 6, 5, 7, 4, 2, 5, 8, 1, 9, 9, 6, 9, 1, 3, 2, 6, 1, 7, 8, 1, 2, 2, 7, 6, 7
Offset: 1

Views

Author

Paolo P. Lava, Apr 11 2013

Keywords

Comments

Decimal expansion of shape of a gamma-extension rectangle; see A188640 for definitions of shape and r-extension rectangle.
Specifically, for a gamma-extension rectangle, 1 square is removed first, then 3 squares, then 28 squares, then 13 squares, then 3 squares,...(see A224579), so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			1.329422167936173581879417768105... = [gamma, gamma, gamma, ...]
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) + Sqrt(4 + EulerGamma(R)^2))/2; // G. C. Greubel, Aug 30 2018
  • Maple
    evalf((gamma+sqrt(4+gamma^2))/2,90);
  • Mathematica
    RealDigits[(EulerGamma + Sqrt[4 + EulerGamma^2])/2, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    Euler/2+sqrt(4+Euler^2)/2 \\ Charles R Greathouse IV, Dec 11 2013