A224578 Decimal expansion of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.
1, 3, 2, 9, 4, 2, 2, 1, 6, 7, 9, 3, 6, 1, 7, 3, 5, 8, 1, 8, 7, 9, 4, 1, 7, 7, 6, 8, 1, 0, 5, 6, 3, 6, 2, 4, 4, 8, 0, 8, 4, 9, 5, 8, 3, 3, 2, 9, 2, 0, 0, 0, 8, 3, 0, 4, 4, 2, 6, 2, 1, 4, 6, 5, 7, 4, 2, 5, 8, 1, 9, 9, 6, 9, 1, 3, 2, 6, 1, 7, 8, 1, 2, 2, 7, 6, 7
Offset: 1
Examples
1.329422167936173581879417768105... = [gamma, gamma, gamma, ...]
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..200
- Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (EulerGamma(R) + Sqrt(4 + EulerGamma(R)^2))/2; // G. C. Greubel, Aug 30 2018
-
Maple
evalf((gamma+sqrt(4+gamma^2))/2,90);
-
Mathematica
RealDigits[(EulerGamma + Sqrt[4 + EulerGamma^2])/2, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
-
PARI
Euler/2+sqrt(4+Euler^2)/2 \\ Charles R Greathouse IV, Dec 11 2013
Comments