cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A224579 Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 3, 28, 13, 3, 1, 2, 1, 1, 8, 3, 4, 3, 3, 15, 12, 5, 2, 8, 1, 24, 2, 3, 5, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 7, 12, 1, 1, 1, 3, 1, 1, 1, 2, 1, 107, 1, 3, 6, 1, 26, 121, 3, 2, 1, 1, 12, 117, 1, 2, 3, 7, 5, 41, 5, 1, 5, 1, 1, 2, 3, 1, 200, 1, 4, 3, 191, 1, 5, 3, 5
Offset: 0

Views

Author

Paolo P. Lava, Apr 11 2013

Keywords

Comments

Continued fraction of the constant in A224578.

Crossrefs

Cf. A001620, A188640, A224578 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((EulerGamma(R) + Sqrt(4+EulerGamma(R)^2))/2); // G. C. Greubel, Aug 30 2018
  • Maple
    Digits:=200; a:=evalf(gamma,5000); evalf((a+sqrt(4+a^2))/2,1000);
    numtheory[cfrac](%,200,'quotients') ;
  • Mathematica
    ContinuedFraction[(EulerGamma+Sqrt[4+EulerGamma^2])/2, 100] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    default(realprecision, 100); contfrac((Euler + sqrt(4 + Euler^2))/2) \\ G. C. Greubel, Aug 30 2018
    

Extensions

Offset changed by Andrew Howroyd, Aug 08 2024
Showing 1-1 of 1 results.