A224579 Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant.
1, 3, 28, 13, 3, 1, 2, 1, 1, 8, 3, 4, 3, 3, 15, 12, 5, 2, 8, 1, 24, 2, 3, 5, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 7, 12, 1, 1, 1, 3, 1, 1, 1, 2, 1, 107, 1, 3, 6, 1, 26, 121, 3, 2, 1, 1, 12, 117, 1, 2, 3, 7, 5, 41, 5, 1, 5, 1, 1, 2, 3, 1, 200, 1, 4, 3, 191, 1, 5, 3, 5
Offset: 0
Links
- Paolo P. Lava, Table of n, a(n) for n = 0..999
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((EulerGamma(R) + Sqrt(4+EulerGamma(R)^2))/2); // G. C. Greubel, Aug 30 2018
-
Maple
Digits:=200; a:=evalf(gamma,5000); evalf((a+sqrt(4+a^2))/2,1000); numtheory[cfrac](%,200,'quotients') ;
-
Mathematica
ContinuedFraction[(EulerGamma+Sqrt[4+EulerGamma^2])/2, 100] (* G. C. Greubel, Aug 30 2018 *)
-
PARI
default(realprecision, 100); contfrac((Euler + sqrt(4 + Euler^2))/2) \\ G. C. Greubel, Aug 30 2018
Extensions
Offset changed by Andrew Howroyd, Aug 08 2024
Comments