A224679 Number of compositions of n^2 into sums of positive triangular numbers.
1, 1, 3, 25, 546, 28136, 3487153, 1038115443, 742336894991, 1275079195875471, 5260826667789867957, 52137661179700350278531, 1241165848412448464485760897, 70972288312605764017275784402928, 9748291749334923037419108242002717050
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..72
Programs
-
Maple
b:= proc(n) option remember; local i; if n=0 then 1 else 0; for i while i*(i+1)/2<=n do %+b(n-i*(i+1)/2) od; % fi end: a:= n-> b(n^2): seq(a(n), n=0..20); # Alois P. Heinz, Feb 05 2018
-
Mathematica
b[n_] := b[n] = Module[{i, j = If[n == 0, 1, 0]}, For[i = 1, i(i+1)/2 <= n, i++, j += b[n-i(i+1)/2]]; j]; a[n_] := b[n^2]; a /@ Range[0, 20] (* Jean-François Alcover, Nov 04 2020, after Alois P. Heinz *)
-
PARI
{a(n)=polcoeff(1/(1-sum(r=1,n+1, x^(r*(r+1)/2)+x*O(x^(n^2)))), n^2)} for(n=0, 20, print1(a(n), ", "))