cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224679 Number of compositions of n^2 into sums of positive triangular numbers.

Original entry on oeis.org

1, 1, 3, 25, 546, 28136, 3487153, 1038115443, 742336894991, 1275079195875471, 5260826667789867957, 52137661179700350278531, 1241165848412448464485760897, 70972288312605764017275784402928, 9748291749334923037419108242002717050
Offset: 0

Views

Author

Paul D. Hanna, Apr 14 2013

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; local i; if n=0 then 1 else 0;
          for i while i*(i+1)/2<=n do %+b(n-i*(i+1)/2) od; %  fi
        end:
    a:= n-> b(n^2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    b[n_] := b[n] = Module[{i, j = If[n == 0, 1, 0]}, For[i = 1, i(i+1)/2 <= n, i++, j += b[n-i(i+1)/2]]; j];
    a[n_] := b[n^2];
    a /@ Range[0, 20] (* Jean-François Alcover, Nov 04 2020, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/(1-sum(r=1,n+1, x^(r*(r+1)/2)+x*O(x^(n^2)))), n^2)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = A023361(n^2), where A023361(n) = number of compositions of n into positive triangular numbers.
a(n) = [x^(n^2)] 1/(1 - Sum_{k>=1} x^(k*(k+1)/2)).