cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224692 Expansion of (1+5*x+7*x^2-x^3)/((1-2*x^2)*(1-x)*(1+x)).

Original entry on oeis.org

1, 5, 10, 14, 28, 32, 64, 68, 136, 140, 280, 284, 568, 572, 1144, 1148, 2296, 2300, 4600, 4604, 9208, 9212, 18424, 18428, 36856, 36860, 73720, 73724, 147448, 147452, 294904, 294908, 589816, 589820, 1179640, 1179644, 2359288, 2359292, 4718584, 4718588, 9437176
Offset: 0

Views

Author

Philippe Deléham, Apr 15 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+5x+7x^2-x^3)/((1-2x^2)(1-x)(1+x)),{x,0,40}],x] (* or *) LinearRecurrence[{0,3,0,-2},{1,5,10,14},50] (* Harvey P. Dale, Sep 17 2016 *)

Formula

G.f.: (1+5*x+7*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)).
a(n) = a(n-1)+4 if n odd.
a(n) = a(n-1)*2 if n even.
a(2n) = 9*2^n - 8 = A048491(n).
a(2n+1) = 9*2^n - 4 = A053209(n+1).
a(n) = 3*a(n-2) - 2*a(n-4) with n>3, a(0)=1, a(1)=5, a(2)=10, a(3)=14.
a(n) = 9*2^floor(n/2)-2*(-1)^n-6. [Bruno Berselli, Apr 27 2013]